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These notes cover the contents of Section 4.3 in [Cis19], on the topic of final objects.

Goal. The section, largely speaking, aims to do the following:

(1) Give a characterization of final objects in the ∞-categorical setting.

(2) Show that final objects in ∞-categories admit a characterization in terms of 2-
categorical data.

The contents have been divided into smaller pieces for the sake of legibility. Throughout,
there have been occasional attempts to parallel results with similar ones for 1-categories.
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0 Recollections

We begin by recalling some notions from previous sections in [Cis19], so we may reference
them later. Furthermore, there is some intuition which may be valuable to have and which
is not provided in loc cit.

0.1 Final maps

Definition 0.1. A map D : � → � of simplicial sets is final if for any morphism ? : � → �,
the induced map

� �

�

D

?◦D ?
in sSet/�

is a weak equivalence of the contravariant model structure over �.

This definition warrants some explaining. The contravariant model structure over � pro-
vides for us the homotopy theory of presheaves of spaces on �; in particular, by taking fibrant
replacements, we can consider the triangle above as being a comparison between right fibra-
tions. In this way, it is clear that one is making some statement about presheaves.

On the other hand, in the context of 1-categories, the category of presheaves on a category
C can be thought of as the formal cocompletion of C , where a presheaf represents the formal
colimit over the diagram given by its category of elements. Classically, a functor � : � → �

between 1-categories is final (or cofinal, depending on the author) if for any �-diagram � :
� → C , the induced comparison map

lim−→(� ◦ �) → lim−→(�)

is an isomorphism.
Combining the above, we may think of Definition 0.1 in the following way: the map

(�, ?D) → (�, ?) is analogous to the comparison map between colimits above, and D being
final means it should be an equivalence for any ?.

We summarize below the major properties we need about final maps.

Corollary 0.2. [Cis19, Cor. 4.1.9] The following statements hold.

(1) A monomorphism of simplicial sets is final if and only if it is right anodyne.

(2) A morphism of simplicial sets is final if and only if it factors into a right anodyne extension
followed by a trivial fibration.

Furthermore, the class of final maps is exactly the smallest class C of morphisms in sSet satisfying the
following properties.

(a) C is closed under composition.

(b) For any pair of morphisms -
5
→ .

6
→ /, if 5 and 6 ◦ 5 are in C then so is 6.

(c) C contains all right anodyne extensions.

Remark 0.3. We note that by [Cis19, Prop. 4.1.11], an equivalence D : �→ � of ∞-groupoids
is automatically final. Indeed, the cited proposition says it suffices to check the definition of
being final on a single right fibration � → -, for which we may choose - = Δ0.
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0.2 Mapping spaces

Definition 0.4. Consider two simplicial sets (?� : � → -), (?� : � → -) ∈ sSet/- over -.
We define the mapping space Map-(�, �) = Map-(?� , ?�) by the pullback

Map-(�, �) Hom(�, �)

Δ0 Hom(�, -)

(?�)∗
?�

where we note that an object in Map-(�, �) thus corresponds to a commutative triangle

� �

-.

?� ?�

Remark 0.5. Observe that if � = Δ0 and ?� = G : Δ0 → -, then Map-({G}, �) is given by the
fiber

?−1
�
(G) �

Δ0 -.

?�

G

Cisinski writes �G := ?−1
�
(G).

Below, we give a summary of the basic properties we need about these mapping spaces.

Proposition 0.6. Consider � → - and �′ → - sSet/-, and let 5 : � → �′ be a morphism over
-. Suppose � → - is a right fibration. Then the following statements hold.

(1) [Cis19, 4.1.12] The simplicial set Map-(�, �) is a Kan complex.

(2) [Cis19, Prop. 4.1.13] If 5 is a monomorphism, then 5∗ : Map-(�′, �) → Map-(�, �) is a Kan
fibration.

(3) [Cis19, Prop. 4.1.14] If 5 is a weak equivalence of the contravariant model structure over -,
then 5∗ : Map-(�′, �) → Map-(�, �) is an equivalence of ∞-groupoids.

We will also need the following fact about the contravariant model structure over -.

Theorem 0.7. [Cis19, Thm. 4.1.16] Let � → - and � → - be right fibrations, and let 5 : � → �

be a morphism over -. The following are equivalent.

(1) 5 is a weak equivalence for the contravariant model structure over -.

(2) 5 is a fibrewise equivalence.

(3) For any . → -, the induced map

5∗ : Map-(., �) → Map-(., �)

is an equivalence of ∞-groupoids.
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1 Final objects

1.1 The definition of final objects

In the context of 1-categories, an object 2 ∈ C is final if it is a colimit for the identity functor
1C : C → C . More generally, 2 is final if and only if the colimit of any functor � : C → D is
given by �(2), which is to say: the inclusion {2} ↩→ C is final.

Definition 1.1. Let - ∈ sSet. An object G ∈ - is final if Δ0 G→ - is final (see Definition 0.1).

Remark 1.2. [Cis19, Rmk. 4.3.2] Note that G is final if and only if Δ0 G→ - is right anodyne.
Indeed, it is a monomorphism, so by Corollary 0.2, being final is equivalent to being right
anodyne.

Proposition 1.3. [Cis19, Prop. 4.3.3] Consider a morphism 5 : - → . of simplicial sets, where
G ∈ - is final. Then 5 is final if and only if 5 (G) ∈ . is final.

Proof. We use properties (a) and (b) from Corollary 0.2, and look at the composition

Δ0 G−→ -
5

−→ .

representing 5 (G). If 5 is final, then (a) yields that 5 (G) is final. Conversely, if 5 (G) is final,
then 5 is final by (b). �

1.2 The pointed join & the Yoneda lemma

Wehave amonoidal structure on sSet provided by the join−∗− : sSet×sSet → sSet, whichwe
recall preserves connected colimits in each variable. However, wewill be interested in pointed
simplicial sets sSet∗, and given a pointed simplicial set (-, G) and simplicial set (, there is no
natural way to turn - ∗ ( into a pointed simplicial set. To remedy this, we introduce the
pointed join - ∗G (.
Definition 1.4. Let (-, G) ∈ sSet∗, and let ( ∈ sSet. We define the simplicial set - ∗G ( by the
pushout

Δ0 ∗ ( Δ0

- ∗ ( - ∗G (.
G∗1( G′

We regard - ∗G ( as pointed by the object G′. This determines a functor sSet∗ × sSet → sSet∗.

Remark 1.5. The pointed join operation is associative in the following sense: given - ∈ sSet∗
and (, (′ ∈ sSet, the associativity isomorphisms for − ∗ − induce a canonical isomorphism

(- ∗G () ∗G′ (′ � - ∗G (( ∗ (′).

To see this, look at the diagram

Δ0 ∗ ( ∗ (′ Δ0 ∗ (′ Δ0

- ∗ ( ∗ (′ (- ∗G () ∗ (′ (- ∗G () ∗G′ (′
G∗1(∗1(′ G′∗1(′

where we note that the left square is a pushout since −∗(′ preserves connected colimits, and
the right square is a pushout by definition. It follows that the outer square is a pushout.
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Definition 1.6. We define the functor � : sSet∗ → sSet∗ by � : (-, G) ↦→ - ∗G Δ0.

Remark 1.7. Given a pointed simplicial set (-, G), the pointed simplicial set (�(-, G), G′) can
be thought of one obtained by forcing G to be final in -. We will see how to motivate this
rigorously shortly, but on a heuristic level, what happens is the following: first, we form the
join - ∗ {G′}, wherein G′ is now a final object. Next, in forming �(-, G), we identify G with
G′. This has the effect that any two morphisms 5 , 6 : H → G are necessarily identified with
the unique morphism H → G′, hence making G final.

Lemma 1.8. [Cis19, Lemma 4.3.5] Let (-, G) ∈ sSet∗, and consider the pointed simplicial set
(�(-, G), G′). Then G′ is a final object in �(-, G).

Proof. An object is final if and only if its representing map is right anodyne; furthermore,
Δ0 G′→ �(-, G) is the pushout of

G ∗ 1Δ0 : Δ0 ∗ Δ0 = Δ1 → - ∗ Δ0.

It therefore suffices to show that G ∗ 1Δ0 is right anodyne, so we need to show it has the left
lifting property with respect to right fibrations. By virtue of [Cis19, Prop. 4.1.2], an inner
fibration ? : � → � is a right fibration if and only if for any object 0 ∈ �, the induced map
�/0 → �/?(0) is a trivial fibration. Thus, we make use of the correspondence of lifting
problems

Δ0 ∗ Δ0 �

- ∗ Δ0 �

G∗1
Δ0 ? ¡

Δ0 �/0

- �/?(0)

G

provided by the adjunction transposition between joins and slices. Here, 0 is the codomain of
arrow in � given by Δ0 ∗Δ0 = Δ1 → �. As the right-most vertical arrow is a trivial fibration,
the lift exists when the arrow to its left is a monomorphism, which it is. �

Proposition 1.9. We have an adjunction

sSet∗ sSet∗

(.,H)↦→(./H,1H)

�

`

That is, there is a natural bijection between pointed maps (�(-, G), G′) → (., H) and pointed maps
(-, G) → (./H, 1H).

Proof sketch. In the simplicial set - ∗ Δ0, let us denote the adjoined object by ∞. A pointed
map

(�(-, G), G′) = (- ∗G Δ0 , G′) → (., H)
is naturally the same thing as a map

- ∗ Δ0 → . such that (G → ∞) ↦→ 1H .

This, in turn is the naturally same thing as a map

- → ./H such that G ↦→ 1H .

This completes the proof. �
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Proposition 1.10. [Cis19, Prop. 4.3.7] Let - ∈ sSet, and consider an object G ∈ -. If the canonical
map -/G → - has a section B : - → -/G such that B(G) = 1G , then G is final. If - is an ∞-category,
then the converse also holds.

Proof sketch. Note that B defines a pointed map (-, G) → (-/G, 1G). By the previous propo-
sition, we can transpose B to a map A : (�(-, G), G′) → (-, G). As B is a pointed section of
-/G → -, A will be a pointed retractiona of the inclusion - ↩→ �(-, G). This implies that
G : Δ0 → - is a retract of G′ : Δ0 → �(-, G). Since these are monomorphisms, being final is
equivalent to being right anodyne, so we conclude by noting that right anodyne extensions
are closed under retracts.

For the final statement: if - is an ∞-category, then -/G → - is a right fibration, then
since G : Δ0 → - is right anodyne (being final) the lifting problem

Δ0 -/G

- -

G

1G

admits a solution. �
aWhy?

Corollary 1.11. [Cis19, Cor. 4.3.8] Let - ∈ sSet, and consider an object G ∈ -. Then 1G is final in
-/G.

Proof. The object Δ0 is a monoid object in the monoidal category (sSet, ∗), with unit ∅ → Δ0

andmultiplication the uniquemapΔ0∗Δ0 = Δ1 → Δ0. We also observed that the pointed join
-∗G( defines an associative action, and one easily sees it is furthermore unital (by considering
( = ∅).

Combining the above two facts, one observes that � = (− ∗− Δ0) inherits the structure of a
monoid object in Fun(sSet∗ , sSet∗); that is, it is a monad. By abstract nonsense, a right adjoint
of a monad is a comonad (with the structure maps induced by transposing the ones for the
left adjoint using the calculus of mates).

Let us write + for the right adjoint, given by (., H) ↦→ (./H, 1H). Then the unit 1 ⇒ �

transposes to the counit map � : + ⇒ 1, which is given simply by the canonical pointed map
-/G → -. On the other hand the multiplication �2 ⇒ � transposes to some inscrutable
comultiplication map � : + ⇒ +2, which satisfies counitality:

+2 +

+

+�

�

which tells us that the comultiplication provides a section of +�. In other words, we have a
pointed section of the pointed map

(-/G)/1G → -/G

so Proposition 1.10 tells us that G is final. �

The above facts let us prove a version of the Yoneda lemma. Recall that the right fibration
-/G → - is supposed to correspond to the representable functor -(−, G). For a 1-category
C , a special case of the Yoneda lemma is the statement that for 2, 2′ ∈ C , one has a natural
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bijection
Ĉ (ℎ2 , ℎ2′) � C(2, 2′)

where Ĉ = Fun(C , Set).

Theorem 1.12. [Cis19, Thm. 4.3.9] Let - be an ∞-category, G ∈ - some object. Then (Δ0 G→ -) ∈
sSet/- has a canonical fibrant replacement in the contravariant model structure over -, given by
-/G → -.

In particular, if H ∈ - is another object, then there is a canonical equivalence of groupoids

Map-(-/G, -/H) → -(G, H).

Proof. We have seen that 1G : Δ0 → -/G is defines a final object, and therefore

Δ0 -/G

-

G

1G

defines a weak equivalence in the contravariant model structure over -. Since -/G → - is
a right fibration, -/G is fibrant and we have proven the first statement.

For the second, we apply the properties listed in Proposition 0.6. In particular, sinceΔ0 1G→
-/G is a monomorphism,

Map-({G}, -/H) → Map-(-/G, -/H)

is a Kan fibration by (2). By theweak equivalenceworked out above, (3) implies thismap is an
equivalence of ∞-groupoids, hence a trivial fibration. Now, by Remark 0.5, Map-({G}, -/H)
is given by the fiber of-/H → - over G, which by [Cis19, Cor. 4.2.10] is canonically equivalent
as an ∞-groupoid to -(G, H). �

1.3 Characterizing final objects ∞-categorically

We now prove the following characterization of final objects in an∞-category, originally due
to Joyal.

Theorem 1.13. [Cis19, Thm. 4.3.11] Let - be an ∞-category, and an object $ ∈ -. Denote by
� : -/$ → - the canonical map. Then the following are equivalent.

(1) $ is a final object in -.

(2) For any object G ∈ -, the ∞-groupoid -(G, $) is contractible.

(3) � : -/$ → - is a trivial fibration.

(4) � : -/$ → - is an equivalence of ∞-categories.

(5) � : -/$ → - has a section sending $ to 1$.

(6) Any morphism D : %Δ= → - for which = > 0 and D(=) = $ arises as the restriction of a
morphism Δ= → -.

Proof. We begin with some easy equivalences.
(1)⇔(5). This is Proposition 1.10.
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(3)⇔(4). Since � is a fibration between fibrant objects of the Joyal model structure, it is
a trivial fibration if and only if it is a weak categorical equivalence, i.e. an equivalence of
∞-categories.

(3)⇔(6). This follows by applying the identity

%Δ= = (Δ=−1 ∗ ∅) ∪ (%Δ=−1 ∗ Δ0)

and the standard lifting problem transposition between joins and slices.
(2)⇔(3). Since � is a fibration between fibrant objects of the contravariant model struc-

ture over -, it is a trivial fibration if and only if it is a weak equivalence for this model struc-
ture. Applying the second statement in Theorem 0.7, as well as our Yoneda lemma (or by
reapplying [Cis19, Cor. 4.2.10]), this is equivalent to -(G, $) → Δ0 being an equivalence of
∞-groupoids, i.e. -(G, $) is contractible.

For the final part of the proof, we use that (1)⇔(5), and split into two parts, proving
equivalence with (3) in one direction using (1) and in the other using (5).

(3)⇒(1). A trivial fibration is automatically final (see Corollary 0.2), so the composition

Δ0 1$−→ -/$ �−→ -,

namely $ : Δ0 → -, is final by closure under composition and Corollary 1.11.
(5)⇒(3). We are given a section B : - → -/$ which sends a final object $ to a final

object 1$, which by Proposition 1.3 implies that B is final. Since B is monic and final, it is
a right anodyne extension by Corollary 0.2. Now, this implies � is a weak equivalence of
the contravariant model structure over - (use that all right anodyne extensions are weak
equivalences by [Cis19, Prop. 2.4.25], and then apply the 2-out-of-3 property). Hence, � is a
trivial fibration. �

1.4 Characterizing final objects 2-categorically

Theorem 1.13 lets us immediately come to some corollaries with remarkable implications.
We begin with some fun and easy ones.

Corollary 1.14. [Cis19, Cor. 4.3.12] Let - be an ∞-category, $ ∈ - an object. Then

$ is final in - =⇒ $ is final in ho(-).

Proof. By [Cis19, Prop. 3.7.2], we have

�0-(G, $) � ho(-)(G, $).

Applying (2) in Theorem 1.13, we are done. �

Corollary 1.15. [Cis19, Cor. 4.3.13] The final objects in an∞-category- form an∞-groupoid which
is either empty or contractible.

Proof. Let  ⊆ - be the full subcategory of final objects. One may interpret (2) in Theorem
1.13 as saying that the unique map  → Δ0 is fully faithful. Unless  is empty, it is also
essentially surjective, hence an equivalence. �

Remark 1.16. Both of the above results seem like they should be a simple consequences, but
with the definitions used here, one sees that they are certainly non-trivial (given all the work
that has lead up to them). In other approaches, e.g. the one in [Lur09], they are significantly
easier to prove (as one essentially takes Theorem 1.13(2) as the definition). On the other
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hand, the approach of [Cis19] has the benefit of making certain other arguments much more
formal.

Corollary 1.17. [Cis19, Cor. 4.3.14] Let $ be final in an ∞-category -. For any simplicial set �,
the constant functor 2$ : �→ - with value $ is a final object of Hom(�, -).

Proof. For this one, we need to import a result about the compatibility between Hom and
slices, specifically [Cis19, Prop. 4.2.12], which says that

Hom(�, -/$) → Hom(�, -)/2$

is an equivalence of ∞-categories. Now, by (4) in Theorem 1.13, we thus have equivalences

Hom(�, -) → Hom(�, -/$) → Hom(�, -)/2$

which also shows that 2$ is final for the same reason. �

The really interesting consequence is the following theorem, characterizing final objects
entirely at the level of some homotopy categories.

Lemma 1.18. Let - be an ∞-category, and consider two objects G, H ∈ -. Then, for any � ∈ sSet,
we have a canonical equivalence of ∞-categories

Hom(�, -(G, H)) ' Hom(�, -)(2G , 2H).

Proof. The functor Hom(�,−) has the following properties:

(a) It commutes with limits, since it is right adjoint to ×.

(b) It preserves Joyal fibrations by [Cis19, Cor. 3.6.4].

(c) It preserves equivalences of ∞-categories by [Cis19, Thm. 3.6.9] and trivial fibrations
by [Cis19, Cor. 3.1.7].

Therefore, it preserves homotopy pullbacks of isofibrations between∞-categories. As a con-
sequence, the homotopy pullback (see [Cis19, Cor. 2.3.28]) below left

-(G, H) Δ0

-/H -

Gho {

Hom(�, -(G, H)) Δ0

Hom(�, -/H) Hom(�, -)

2Gho

gives rise to the homotopy pullback above right. Owing to the fact that we have a canonical
weak equivalence Hom(�, -/H) ' Hom(�, -)/2H , this shows that

Hom(�, -(G, H)) ' Hom(�, -)(2G , 2H)

as desired. �

Theorem 1.19. [Cis19, Thm. 4.3.16] Let - be an ∞-category, and $ ∈ - an object. Then the
following are equivalent.

(1) $ is a final object in -.

(2) For any � ∈ sSet, the constant functor 2$ is a final object in ho(Hom(�, -)).

(3) For any � � #(�) where � is a finite partially ordered set, the constant functor 2$ is a final
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object in ho(Hom(�, -)).

Above, # denotes the nerve functor.

Proof. (1) ⇒ (2). We know by the above corollaries that 2$ is final in Hom(�, -) and hence
final in the homotopy category.

(2) ⇒ (3). This is trivial, as (3) is immediately a special case of (2).
(3) ⇒ (1). We assume that � = #(�) and that 2$ is final in ho(Hom(�, -)). Applying

Lemma 1.18, we have that

{∗} = ho(Hom(�, -))(2G , 2$) � �0(Hom(�, -)(2G , 2$)) � �0(Hom(�, -(G, $)))

so every map � → -(G, $) is homotopic to a constant map. Therefore, applying the below
Lemma 1.20, we see that -(G, $) is contractible for all G ∈ -, so $ is final. �

Lemma 1.20. [Cis19, Lemma 4.3.15] Let - ∈ sSet and assume that for any finite poset �, any map
#(�) → - is Δ1-homotopic to a constant map. Then - → Δ0 is a weak homotopy equivalence.

Proof. The proof relies on [Cis19, Prop. 3.8.10], which says that for a pointed Kan complex
(., H), there is a canonical bijection �0(Hom∗(%Δ=+1 , .)) � �=(., H), where one points %Δ=+1

however one pleases. The idea is to apply this to the nice fibrant replacement . = Ex∞(-) of
-. The essential claim is as follows:

(★) Any map %Δ= → Ex∞(-) is Δ1-homotopic to a constant map.

To see that this is true, note that as %Δ= has only finitely many non-degenerate simplices, it
is compact as an object of sSet. Therefore, a map as above factors as

%Δ= → Ex8(-) → Ex∞(-), for some 8 > 0.

By adjunction, we obtain a map Sd8(%Δ=) → -; applying [Cis19, Lemmas 3.1.25 & 3.1.26],
Sd8(%Δ=) is the nerve of a finite poset, so this map is Δ1-homotopic to a constant map. One
deduces that %Δ= → Ex8(-) is Δ1-homotopic to a constant map too, which proves the claim.

Now, choosing = = 0, we see that - is non-empty. Choosing = = 1, we see that it is
connected, i.e. �0(-) = {∗}. From this, �=(-, G) does not depend on G, and applying the
general case of (★) we see that �=(-, G) is trivial for all =. Therefore, the map Ex∞(-) → Δ0

is a weak homotopy equivalence, from which we conclude that - → Δ0 is a weak homotopy
equivalence. �

Remark 1.21. We take this moment to advertise the approach towards∞-categories given by
Emily Riehl & Dominic Verity in [RV22].

One may form an (∞, 2)-category Qℭat whose objects are ∞-categories and whose map-
ping∞-categories are given by Hom(−,−). This is an example of an∞-cosmos in the sense of
[RV22]. One may further form the homotopy 2-category hQℭat ofQℭat by letting the mapping
categories be given by the homotopy categories ho(Hom(−,−)).

The thesis of [RV22] is that much of the basic theory of ∞-categories can be developed
essentially synthetically in the context of an ∞-cosmos K, and particularly, that many con-
cepts depend only on the homotopy 2-category hK. The above theorem is an example of this
concept: it tells us that final objects in ∞-categories are detected on the level of mapping
categories in hQℭat.

Cisinski proves a more general version of this later in Chapter 6 of [Cis19]; in particular,
he proves that adjoints depend only on 2-categorical data in the homotopy 2-category hQℭat.
This generalizes the case of final objects, as an objectΔ0 → - of an∞-category is a final object
if and only if it is right adjoint to the unique map - → Δ0.
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One may develop a great deal of basic ∞-category theory in terms of the interplay be-
tween an ∞-cosmos K and its homotopy 2-category hK, and this is done systematically in
[RV22]. Indeed, at once towards the beginning of the book, they define adjoints in terms of
the existence of unit and counit natural transformations satisfying the triangle identities in
hK, and use this to define such things as initial/terminal objects. One can similarly define
what it means for an ∞-category to admit all (co)limits of a given shape, though some more
care is required when one is only concerned with the existence of the (co)limit of a particular
diagram.

While the theory of ∞-categories in ∞-cosmoi presents a number of technical issues, it
allows a model independent mostly synthetic approach to proofs; furthermore, this setting
occasionally allows for the category theory in∞-category theory to shine through somewhat
more clearly, as many proofs end up being very similar to those for 1-categories. The down-
side is that one must additionally show that what one has proven agrees with the standard
notions in one’s prefered model, and that many explicit constructions become impossible; for
example, an∞-cosmos may not even have an object representing a category of∞-groupoids,
which leads to formulations of the Yoneda lemma becoming somewhat more tricky. In part,
these issues are inevitable, as there aremore “exotic”∞-cosmoiwhich one should not think of
as modeling (∞, 1)-categories, but rather (∞, 1)-categorical aspects of e.g. (∞, =)-categories.

1.5 An odd end which is only relevant much later

From doing a search through [Cis19], the following proposition is only used twice; in one of
those times, it is merely a suggestion. Therefore, we have deferred it to this subsection at the
end.

Proposition 1.22. [Cis19, Prop. 4.3.10] Let - be an ∞-category, and $ an object in -. Suppose
there is a natural transformation 0 : 1- ⇒ 2$ from the identity of - to the contant functor with
value $, and suppose that component arrow 0$ : $ → $ is homotopy equivalent to the identity, i.e.
[0$] = [1$] in ho(-). Then $ is final.

Proof. By definition, the natural transformation determines a homotopy

ℎ : Δ1 × - → -.

The fundamental claim is the following:

(★) We may replace ℎ by a homotopy ℎ′ : Δ1 ×- → - such that ℎ′ restricted to Δ1 × {$} is
the identity 1$.

By the assumption that [0$] = [1$], we have a commutative triangle � : Δ2 → - of the form
$

$ $

0$1$

1$

�

and so we may consider the map

ℎ̃ : Λ2
1 × - → - glued from

{
Δ{0,1} × - → - coming from Δ1 1-→ Hom(-, -), and
Δ{1,2} × - ℎ→ -.

In other words, the mapΛ2
1 → Hom(-, -) described by the chain of natural transformations

1-
1⇒ 1-

0⇒ 2$ .

In totality, the above data provides us with the following lifting problem
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Δ2 × {$} ∪Λ2
1 × - -

Δ2 × - Δ0

(�,ℎ̃)

:

which admits a solution since the left map is inner anodyne and - is an ∞-category. Setting
ℎ′ = :|Δ{0,2}×- yields the desired homotopy, proving (★).

Transposing ℎ′, we get a natural transformation 0′ : Δ1 → Hom(-, -) whose component
at $ is 1$. Transposing the opposite way, we have a functor �′ : - → Hom(Δ1 , -) such that
�′($) = 1$. In fact, since 0′ : 1- ⇒ 2$, the functor �′ factors through

�′ : - → -//$ ⊆ Hom(Δ1 , -)

and defines a pointed section of the canonical projection -//$ → -. The canonical equiva-
lence

-/$ → -//$
of [Cis19, Prop. 4.2.9] sends the final object of-/$ to 1$, and as equivalences of∞-groupoids
are final (see Remark 0.3), this means 1$ is final in -//$. Finally, we have the retraction

Δ0 Δ0 Δ0

- -//$ -

$ 1$ $

�′

where the middle arrow is right anodyne (since it is a monic and final map), hence $ is final.
�
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