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Abstract

We provide an introduction to the basic theory of triangulated categories and t-structures,
and cover these in detail with a particular focus on recollements, roughly speaking gluings.
Triangulated categories are a convenient setting for developing foundational results in ho-
motopical algebra, and t-structures allow a refinement of this by imposing that objects have
a kind of “grading” on them, encoded in certain (co)reflective subcategories. We prove
a number of results on these topics, including a result of Hoshino–Kato–Miyachi stating
that triangulated categories admitting small coproducts and a silting object also admit a
t-structure whose heart is equivalent to a module category.
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Populärvetenskaplig Sammanfattning

Inom algebra finns det ett koncept som heter kohomologi. Fr̊an början kom
det fr̊an topologi: till ett rum kan man associera en mängd algebraiska strukturer,
nämligen kohomologigrupperna av rummet, som berättar om vissa egenskaper rum-
met har. Man märkte relativt snabbt att s̊adana strukturer kunde användas i fler
situationer, och p̊a s̊a vis föddes ämnet homologisk algebra. Det man s̊ag var att
man kunde skapa en kohomologiteori inom alla s̊a kallade abelska kategorier.

Inte l̊angt efter att kohomologi hade definierats inom abelska kategorier ins̊ag
vissa matematiker att man behövde n̊agot mer flexibelt för mer krävande situa-
tioner. Anledningen är inte s̊a sv̊ar att först̊a: kohomologi kommer alltid fr̊an vissa
följder

· · · → Xi−1 → Xi → Xi+1 → · · ·

av morfismer (tänk: funktioner) mellan algebraiska objekt, där man beräknar ko-
homologin Hi(X•) i princip genom att kolla p̊a skillnaden mellan avbildningen av
Xi−1 → Xi och det som Xi → Xi+1 sänder till noll. Det är omedelbart uppenbart
att man förlorar information genom att göra detta: man slänger bort en ganska
stor del av följden.

Detta löstes genom att man bytte ut den initiala abelska kategorin med en ny
kategori vars objekt är exakt s̊adana följder som ovan, fast där man betraktar tv̊a
föjder som “samma” ungefär om de ger samma kohomologi. P̊a s̊a sätt glömmer
man inte följden man började med. Denna metod har dock ett annat problem:
den nya kategorin man använder är inte längre en abelsk kategori. Däremot har
den liknande egenskaper som en abelsk kategori förrutom att de inte längre gäller
“direkt” utan p̊a ett mer avancerat sätt.

Den abstrakta strukturen som kommer fram i sammanhanget ovan kallas en
triangulerad kategori. Denna uppsatts handlar om precis dessa kategorier, tillsam-
mans med extra strukturer som man kan placera p̊a dem, till exempel s̊a kallade
t-strukturer, som fungerar som ett abstrakt sätt att formulera hur man kommer
ih̊ag följderna som diskuterades innan och konsekvenserna det har.

i



Contents

Frontmatter i

Table of Contents ii

1 Introduction 1
1.1 Some History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 A Note on Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Additive & Abelian Categories 5
2.1 (Pre-)Additive Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Triangulated Categories 15
3.1 (Pre-)Triangulated Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Issues of Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Localization of Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 The Verdier Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Recollement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Notes on Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Derived Categories 56
4.1 Chain Homotopies & Quasi-Isomorphisms . . . . . . . . . . . . . . . . . . . . . . 56
4.2 The Triangulated Structure on K(A) . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 The Derived Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 t-Structures 73
5.1 t-Structures & Truncation Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 The Heart is Abelian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Cohomology Functors & More on Truncation . . . . . . . . . . . . . . . . . . . . 81
5.4 Extensions in the Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Cohomology is Cohomological . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 t-Exactness & Gluing t-Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 Notes on Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 t-Structures From Silting Objects 102
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Compact Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Homotopy Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Silting Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Notes on Gluing & Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Table of Selected Notation 122

References 123

ii



1 Introduction

1 Introduction

1.1 Some History
This thesis concerns many tightly related topics centered around the concept of a t-structure on
a triangulated category, and the main goal of the thesis is to present a reasonably self-contained
exposition of these. Put broadly, triangulated categories are abstract settings in which one can
do certain weakened constructions of homological algebra, and in particular they allow one to do
some “elementary” version of homological algebra up to homotopy (so triangulated categories can
be thought of as some homotopy-weakening of Abelian categories). This is perhaps surprisingly
important even in studying ordinary homological algebra: in some sense, homological algebra is
at its roots all about studying Abelian categories along with their derived categories (which we
discuss in Section 4), however the latter crucially fail to avoid issues of homotopy—the derived
category of an Abelian category is not an Abelian category, but it is a triangulated category. It
may be useful to understand a bit of the history involved in order to see why one should care
at all. For a much more detailed description of the history of homological algebra, on which we
base our own, see the excellent [Wei99].

The modern notion of homological algebra has its roots in the book by Cartan & Eilenberg
[CE56] from 1956, which itself was a response to a number of developments within topology—for
example, the Ext-groups defined by Baer in 1934 [Bae34] were investigated by Eilenberg and
MacLane in 1942 [EM42] in order to state a version of the universal coefficient theorem, and
earlier than that Čech (in [Čec32]) had given a version of the universal coefficient theorem using
what we would today recognize as Tor-groups. All of the work prior to the book of Cartan &
Eilenberg was done purely in the context of Abelian groups and in terms of specific examples.
These ideas were put into a more cohesive form in [CE56] under the name derived functors,
which also allowed the authors to extend them to the context of modules over an arbitrary ring.

Around the same time, Leray (in [Ler46a; Ler46b], and [Ler50]) was developing the notion of
a sheaf (most of his early work on which was done in a concentration camp), their cohomology
and tools for computing said cohomology, namely spectral sequences (together with Koszul’s
work in [Kos47b; Kos47a]). Some of these methods, for example those of spectral sequences,
were also later included in [CE56]. Still, all of these methods were contained to the world of
modules over a ring.

This was the state of affairs until Grothendieck, in his 1957 “Tohoku paper” [Gro57], intro-
duced a good notion of Abelian categories and detailed a method for doing homological algebra
in such a framework, including generalizing the notion of derived functors. This allowed the
techniques of homological algebra to be applied more directly to situations such as categories of
sheaves on topological spaces, which were previously inaccessible except through ad-hoc meth-
ods.

For many purposes, the homological algebra of [Gro57] (or even [CE56] and other contem-
porary sources) was sufficient. However, for the work Grothendieck was doing in algebraic
geometry, he needed a more flexible framework. In particular, in order to state and prove a
duality theorem for sheaf cohomology, he needed to consider a homological algebra not just
of “objects in an Abelian category” but of chain complexes of such objects. To elaborate, the
methods available to him at the time essentially consisted of procedures one applies to individ-
ual objects, one at a time. What he needed was something which bundled together all these
procedures into a single structure, and which enriched the individual objects to chain complexes
of objects up to cohomology (more precisely, quasi-isomorphism).

To this end, Grothendieck sketched an idea about derived categories, which was later made
into a precise notion by his student Jean-Louis Verdier in his thesis around 1967 (though only
published in full in 1996 as [Ver96]). In his thesis, in order to prove results about derived
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1.2 Structure of the Thesis 1 Introduction

categories, he introduced the general framework of triangulated categories.
Triangulated categories proved to be a very fruitful framework for doing quite a lot of foun-

dational theory surrounding a homotopical version of homological algebra, in particular for
having control over localizations, and giving a precise notion of what it means for a functor to
be (co)homological (which allowed a rigorous way to describe how cohomological functors turn
short exact sequences into long exact sequences). On the other hand, one finds that triangulated
categories do not have enough structure and information in order to capture all the features of
derived categories, which might be an issue given that triangulated categories were invented
precisely to explain the structure of derived categories.

This situation was solved in [BBDG18] with the introduction of t-structures. A t-structure
is additional data one puts on a triangulated category which essentially endows the objects of
the category with a kind of “grading,” or “chain complex structure,” much like how the objects
of a derived category consist of actual chain complexes. Once one has this additional data,
it becomes possible to extract from it things like cohomology functors (which, appropriately,
are examples of cohomological functors), and truncation functors (generalizing the concept of
“cutting off” a chain complex at some point). Furthermore, it gives one the ability to define
(t-)exact functors, namely (triangulated) functors which preserve this additional “grading.” The
benefit of this is that it provides a precise way in which some functors between derived categories
preserve more or less structure.

On the other hand is another recurring topic in this thesis, namely recollements. Their
name, translated from French, means something like “regluings” (or “patchings”), which sug-
gests a picture that they describe how two triangulated categories are glued together to form
a third. Roughly speaking, they are split short exact sequences of triangulated categories, and
they do indeed lead to certain “gluing” phenomena which otherwise do not occur in general.
Recollements are also interesting from a purely theoretical standpoint since they demonstrate
very well how to operate the structure of a triangulated category.

1.2 Structure of the Thesis
At the end of this document, on page 122, is a table displaying some of the notation used
throughout the thesis.

We begin, in Section 2, with a short introduction to some of the prerequisites regarding
Abelian categories, in particular introducing chain complexes and their cohomology in an ab-
stract setting. Notably, however, this section should not be taken as a complete description of
all the prerequisites on this topic. The section is essentially entirely based on the exposition of
Abelian categories found in [KS06], though in a less general setting.

In Section 3 we introduce triangulated categories, which will form the main setting of interest
for most of the thesis. The basic theory is contained in Section 3.1, where we discuss the
foundational definitions and their consequences. A notable result of interest is Proposition 3.15,
which shows that the Hom functors in a triangulated category are cohomological. After this, in
Section 3.2, we discuss some pertinent questions regarding uniqueness of certain constructions in
triangulated categories, in particular Lemma 3.28 gives a criterion for when cones have a unique
induced map.

Sections 3.3 and 3.4 are dedicated to building up the machinery required to define the Verdier
quotient of a triangulated category by a null system (i.e. a triangulated subcategory closed
under isomorphism), roughly speaking a coherent way to kill the objects of the Verdier quotient
while still retaining a triangulated structure. The former is focused on the general theory of
localization of categories, while the latter then specializes that to the context of triangulated
categories. Amongst the important results of Section 3.3 are Proposition 3.42, which gives an
explicit construction of the localization of a category by a suitably nice class of morphisms
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1.2 Structure of the Thesis 1 Introduction

(called a multiplicative system), and Proposition 3.46, which says that the localization of an
additive category (see Section 2.1) by a (left or right) multiplicative system of morphisms yields
an additive category. This is then used in Section 3.4 to show that the Verdier quotient of
a triangulated category is again a triangulated category, and that the canonical “projection”
functor is triangulated; see Theorem 3.56. Another important result here is a characterization
of when a morphism becomes invertible in the Verdier quotient (given in Corollary 3.67).

The last part of Section 3 is Section 3.5, which covers some of the theory of recollements
(used later in Section 5.6). Notable results here are Theorems 3.75 and 3.87, which encapsulate
very many of the formal categorical properties of recollements. The latter theorem also gives
access to some non-trivial distinguished triangles; see Corollary 3.89. The references for Section
3 are primarily [KS06] and [Nee01], but also include [Kra22] and [MM92], particularly for Section
3.5.

Section 4 exists primarily to give some explicit non-trivial examples of the machinery of
Section 3 “in the wild,” namely derived categories of Abelian categories. The derived cate-
gory is obtained by taking the category of chain complexes in an Abelian category, identifying
morphisms under homotopy, then taking the Verdier quotient of this with respect to acyclic
complexes, i.e. those whose cohomology is zero. In this way, one is considering a category of
chain complexes “up to quasi-isomorphism,” and this is made precise in Corollary 4.29. We
present the fundamentals here in a reasonably complete way, though with some arguments only
being sketched. The exposition here is largely based on [KS06], especially in Sections 4.2 and
4.3, although the proof of Theorem 4.28 is based on an analogous proof for topological spaces
(as outlined in [Ram21]), and the proof of Lemma 4.26 was independently worked out. The
proof of Corollary 4.29 is based on the outline in [Pap20].

In Section 4 one also sees the first motivations for t-structures, which are the subject of
Section 5. There, we treat t-structures, and there are a number of central results of interest.
In Section 5.1, we give the definition of a t-structure and construct one of the most important
features they have, namely the truncation functors. In Section 5.2, we prove that the heart of
a t-structure is an Abelian category, and following this we construct some cohomology functors
associated to a t-structure in Section 5.3. These give a sequence of functors Hi : D → D♡ from a
triangulated category D with a t-structure into the heart D♡ of the t-structure, and in Section
5.5 we show that these functors are cohomological. In between, we also have an important
result in Section 5.4 showing that (Yoneda) extensions in the heart D♡ can be computed using
a Hom-functor; see Theorem 5.30. Essentially all of these results are used later in Section 6.

In Section 5.6, we relate recollements to t-structures. More precisely, we first show that given
a suitably compatible “short exact sequence” (i.e. Verdier quotient sequence, in our terminology)
of triangulated categories with t-structures, the t-structures on the smaller pieces determines
the one on the bigger piece, and vice versa (see Propositions 5.42 and 5.43). We then show what
could be considered the “main” result of the subsection, Theorem 5.45, which says that given a
recollement where the smaller pieces have t-structures, this (uniquely) determines a t-structure
on the bigger piece (i.e. the “gluing”). We end with giving two toy examples of applying this.

The main reference for Section 5 is [KS94], which covers essentially everything except the
content of Section 5.4 and most of Section 5.6. For Section 5.4, the proof of Theorem 5.30 was
worked out independently with some initial guiding direction from my advisor. The lion’s share
of what is in Section 5.6 (with the exception of the final part of Theorem 5.45, which is taken
directly from the original source, [BBDG18]) was worked out independently based on the very
brief outline in [GM03, p. 286, Ex. IV.4.2] and with some occasional tips from my advisor.

Section 6 covers just enough in order to use the previously developed theory to prove Theorem
6.21, which is due to Hoshino–Kato–Miyachi. This theorem is the focal point of the section,
and it says that in any sufficiently nice triangulated category (one which admits a silting object,
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that is, a compact generator with certain Hom-properties) admits a similarly nice t-structure.
In order to prove this, we define compact objects in Section 6.2 and prove a proposition about
triangulated categories which are generated by some set of objects. In Section 6.3, we define
“the” homotopy colimit of a certain kind of diagram, and use this to prove an “approximation”
result, namely Theorem 6.16. These results are then combined to prove Theorem 6.21. The
primary resource used in this section is [Jas21].

1.3 Prerequisites
It is somewhat difficult to estimate the precise required prerequisites for this thesis. The main
necessity is a healthy amount of category theory and facts from homological algebra. As noted
before, this thesis is very much not self-contained, and one does need a strong foundation in the
aforementioned subjects. As a result, we take very many of the results from [KS06] for granted,
particularly those of their Chapter 8, amongst other things. All such results are standard, and
therefore should not be too hard to look up should it occur that a reference has been neglected.
Outside of these, there are essentially no formal prerequisites other than those required by the
previous two.

1.4 A Note on Foundations
There are various approaches to making the foundations of category theory precise, and in
practice it is not of great importance which one is used. One approach is based on choosing
three inaccessible cardinals, one corresponding to “small,” another to some ordinary, default
size, and a final for “large.” To use this approach, one must then postulate the existence of such
inaccessible cardinals. Another approach, which we take in this thesis (following [KS06], who
follow [SGA4]), uses universes.
Definition 1.1. Let U be a set. We say U is a (Grothendieck) universe if it satisfies the following
properties:

(i) ∅ ∈ U ,

(ii) if u ∈ U , then u ⊂ U ,

(iii) if u ∈ U , then {u} ∈ U ,

(iv) if u ∈ U , then the power set P(u) ∈ U ,

(v) if I ∈ U and ui ∈ U for all i ∈ I, then ⋃i∈I ui ∈ U , and

(vi) N ∈ U .
A universe is then essentially a set in which one can perform practically any set-theoretical

operation of interest upon its elements, and still remain within the universe. We add the following
axiom to Zermelo-Fraenkel set theory:
Axiom. Any set is contained in a universe. That is, for any set X, there exists a universe U
such that X ∈ U .

For the thesis, we fix some universe U , and make the following definitions.
Definition 1.2. We say a set S is small if S ∈ U . A category C is locally small if for all objects
X,Y ∈ C, HomC(X,Y ) is small. We say C is small if it is locally small, and furthermore, the
set of all objects in C is small.

By default one should assume that, unless otherwise specified, all sets and categories are
small although it should be noted that this is usually not actually necessary.
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2 Additive & Abelian Categories

2 Additive & Abelian Categories

2.1 (Pre-)Additive Categories
We want a natural place (i.e. category) in which to do homological algebra. At its most basic
level, homological algebra occurs in the category of Abelian groups, Ab, and so we should aim
to replicate features of this category. One of the most immediate properties is that if A,B ∈ Ab
are Abelian groups, then HomAb(A,B) is also an Abelian group. In particular, for any two
morphisms f, g : A→ B, we can define (f+g)(a) = f(a)+g(a). Furthermore, this is well-behaved
with respect to composition: for all composable morphisms f, g, h, (f + g) ◦h = (f ◦h) + (g ◦h),
and h ◦ (f + g) = (h ◦ f) + (h ◦ g). Notably, the composition map ◦ is Z-bilinear. We may then
pose the following definition:

Definition 2.1. A pre-additive category is a category C such that for each A,B ∈ C, the set
HomC(A,B) has the structure of an Abelian group, and for each A,B,C ∈ C the map

◦ : Hom(B,C)×Hom(A,B)→ Hom(A,C)

is bilinear.

In the category of Abelian groups, finite products and coproducts agree. This is also always
true in pre-additive categories.

Proposition 2.2. Let C be a pre-additive category, and let A1, A2 ∈ C.

(a) Suppose the product A1 × A2 exists, and let pk : A1 × A2 → Ak be the projections. Define
the maps ik : Ak → A1 × A2 to be the maps induced by idAk : Ak → Ak and the zero map.
Then

idA1×A2 = (i1 ◦ p1) + (i2 ◦ p2).

(b) Let B ∈ C and assume there are maps pk : B → Ak, ik : Ak → B such that

idB = (i1 ◦ p1) + (i2 ◦ p2) and pj ◦ ik =
{

idAk if j = k,

0 if j ̸= k.

Then B together with (p1, p2) is a product of A1 and A2, and B together with (i1, i2) is a
coproduct of A1 and A2.

Proof sketch. For a full proof, see [KS06, pp. 169–170, Lemma 8.2.3]. To prove (a), note that

p1 ◦ ((i1 ◦ p1) + (i2 ◦ p2)) = (p1 ◦ i1 ◦ p1) + (p1 ◦ i2 ◦ p2) = p1 + 0 ◦ p2 = p1 ◦ idA1×A2 .

A symmetric calculation shows the same thing for p2, and so by the universal property of the
product we obtain the desired equality.

To prove (b), first pick an arbitrary Y ∈ C and apply HomC(Y,−). Since this commutes
with products, this lets us assume that C = Ab. In particular, to see that B is a product of
A1 and A2, it suffices to see that HomC(Y,B) is a product of HomC(Y,A1) and HomC(Y,A2) in
the category Ab, functorially for all Y ∈ C. The proposition can then be checked using explicit
calculations, in particular by checking that the canonical maps B → A1 ×A2 and A1 ⊔A2 → B
are isomorphisms. □

Corollary 2.3. Let C be a pre-additive category, and let A1, A2 ∈ C. Whenever their product
exists, so does their coproduct. Furthermore, we have an isomorphism r : A1 ⊔ A2 → A1 × A2
induced by the maps ik from above.
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2.1 (Pre-)Additive Categories 2 Additive & Abelian Categories

Definition 2.4. Let C be a pre-additive category. When a product A×B exists, we denote it
by A⊕B and call it the direct sum.

Above, one sees that products and coproducts agree for all finite, but non-empty, cases. The
following gives us the empty case:

Lemma 2.5. Let C be a pre-additive category, let A,B,C ∈ C, and suppose we have morphisms
f : A→ B, g : B → C. Then 0 ◦ f = 0 and g ◦ 0 = 0.

Proof. By bilinearity of composition, we have that

0 ◦ f + 0 ◦ f = (0 + 0) ◦ f = 0 ◦ f =⇒ 0 ◦ f = 0

and
g ◦ 0 + g ◦ 0 = g ◦ (0 + 0) = g ◦ 0 =⇒ g ◦ 0 = 0.

This proves the lemma. ■

Proposition 2.6. Let C be a pre-additive category. If an object ∗ ∈ C is terminal, then it is
initial. Conversely, if an object ∅ ∈ C is initial, then it is terminal.

Proof. Suppose ∗ ∈ C is terminal. Then there is a unique map ∗ → ∗ which must also be the
identity, so in particular id∗ = 0 ∈ Hom(∗, ∗). Now let A ∈ C and suppose we have a morphism
f : ∗ → A (of which there exists at least one, since the hom-sets are Abelian groups). By Lemma
2.5, we then have

f = f ◦ id∗ = f ◦ 0 = 0 =⇒ f = 0.
Therefore, any map ∗ → A is zero, so there is exactly one map ∗ → A for each A ∈ C, i.e. ∗ is
inital. The case where ∅ is initial follows by a dual argument. ■

An interesting feature of pre-additive categories is that much of the additive structure is
totally determined by the underlying category.

Proposition 2.7. Let C be a pre-additive category, let A,B ∈ C, and let f, g ∈ Hom(A,B). If
the direct sums A⊕ A and B ⊕B exist, then the morphism f + g ∈ Hom(A,B) is given by the
composition

A
∆A−−→ A⊕A f⊕g−−→ B ⊕B ∇B−−→ B

where the first map is the diagonal map and the last map is the codiagonal, i.e. the map

B ⊕B → B

induced by the universal property of the coproduct along with the identity map idB.

Proof. Let pA1 , pA2 : A ⊕ A → A, iA1 , iA2 : A → A ⊕ A be as before (and similarly define maps for
B). Then it is easily computed that

pA1 ◦ (iA1 + iA2 ) = (pA1 ◦ iA1 ) + (pA1 ◦ iA2 ) = idA = pA1 ◦∆A

and similarly for pA2 , so iA1 + iA2 = ∆A. An essentially identical proof shows that ∇B = pB1 + pB2 .
Therefore, we have that

∇B ◦ (f ⊕ g) ◦ iA1 = f, ∇B ◦ (f ⊕ g) ◦ iA2 = g,

and therefore
∇B ◦ (f ⊕ g) ◦∆A = (∇B ◦ (f ⊕ g)) ◦ (iA1 + iA2 ) = f + g

as desired. ■
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2.1 (Pre-)Additive Categories 2 Additive & Abelian Categories

So we see that the additive structure on the Hom-sets in a pre-additive category is totally
determined by the underlying category whenever that makes sense, i.e. when the product exists.
Therefore, it is suggestive for an additive category to be a pre-additive category where such
products always exists. We make the following definition:

Definition 2.8. An additive category is a pre-additive category such that all finite products
(including the empty product) exist.

Remark 2.9. Alternatively, one can define an additive category as a category C such that

(a) there is a zero-object 0 ∈ C,
(b) for any A,B ∈ C, the product A×B and the coproduct A ⊔B exist,
(c) for any A,B ∈ C, the morphism r : A⊔B → A×B induced by the maps (idA, 0) : A→ A×B,

(0, idB) : B → A×B is an isomorphism, and
(d) for every A ∈ C, there is some a ∈ HomC(A,A) such that the composition

A
∆A−−→ A×A (a,idA)−−−−→ A×A r←− A ⊔A ∇A−−→ A

is the zero morphism.

It is then clear that a pre-additive category admitting all finite products satisfies all these
properties (with the morphism a above being −idA). It is also not too hard to show the converse
(see [KS06, p. 173, Thm. 8.2.14]). The final condition, (d), is essentially the existence of additive
inverses. Intuitively, it is imposing the existence of a map a : A → A such that for all x ∈ A,
a(x) + x = 0.

Definition 2.10. Let C and D be (pre-)additive categories. A functor F : C → D is additive if
for each A,B ∈ C, the induced map HomC(A,B)→ HomD(F (A), F (B)) is a homomorphism of
Abelian groups.

Since the underlying category of an additive category totally determine the structure, we
should expect that additive functors too are characterized by a purely categorical criterion. This
is true: additive functors are precisely those that preserve finite products.

Proposition 2.11. Let C and D be additive categories. Then a functor F : C → D is additive
if and only if it commutes with finite products.

Proof sketch. For a full proof, see [KS06, pp. 173–174, Prop. 8.2.15]. This follows essentially
from the fact that, for two functors F, F ′ : C → Ab commuting with finite products, the obvious
morphism

HomFun(C,Ab)(F, F ′)→ HomFun(C,Set)(U ◦ F,U ◦ F ′), η 7→ Uη

given by composing with the forgetful functor U : Ab → Set is an isomorphism (see [KS06, p.
173, Prop. 8.2.12]). The argument is then:

Fix some A ∈ C. We then have two functors α, β : C → Ab given by

α : Y 7→ HomC(A, Y ), β : Y 7→ HomD(F (A), F (Y )).

Then α commutes with finite products, and if F commutes with finite products, then β also
does. In that case, the functors U ◦α and U ◦β also commute with products, and so the canonical
natural transformation U ◦ α → U ◦ β, f 7→ F (f), lifts to a natural transformation α → β. In
light of what this lifting is, this says any set map HomC(A, Y ) → HomD(F (A), F (Y )) is also a
group homomorphism.

Conversely, suppose F is additive. For any A,B ∈ C, we have a characterization of the
product A × B from Proposition 2.2. By the additivity of F , the same relations hold for
F (A×B). □
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Using the characterization of additive categories from Remark 2.9, we have the following
proposition, which in some cases lets us deduce that a category is additive.

Proposition 2.12. Let C be an additive category, and let D be a category where finite products
and coproducts exist and coincide. Suppose there exists a functor F : C → D which is essentially
surjective and preserves finite products and finite coproducts. Then this induces a unique additive
structure on D such that F is additive.

Proof sketch. We just have to check the conditions of Remark 2.9. By assumption, (a)–(c) are
verified in D, and so we just need to check (d). Let X ∈ D. Since F is essentially surjective, we
know that X ∼= F (A) for some A ∈ C. Since C is additive, we have a morphism a : A→ A such
that

A
∆A−−→ A⊕A (a,idA)−−−−→ A⊕A ∇A−−→ A

is zero. Applying F and using that it preserves both finite products and coproducts, we see that

F (A)
∆F (A)−−−−→ F (A)⊕ F (A)

(F (a),idF (A))
−−−−−−−−→ F (A)⊕ F (A)

∇F (A)−−−−→ F (A)

is zero, so F (a) verifies (d). Therefore, D is additive. That F is additive follows since it preserves
finite products by Proposition 2.11. □

2.2 Abelian Categories
While in additive categories we have access to addition of morphisms, this is not enough struc-
ture to do homological algebra. The category Ab of Abelian groups satisfies more properties.
For example, we may form kernels, cokernels, and images, and we have various isomorphism
theorems. A natural setting to generalize this is in the framework of Abelian categories.

Definition 2.13. Let C be a category with a zero object, and let f : X → Y be a morphism in
C. The kernel of f is the pullback

ker f 0

X Y
f

and the cokernel of f is the pushout

X Y

0 coker f.

f

The image of f is
im f := ker(Y → coker f),

while the coimage of f is
coim f := coker(ker f → X).

Remark 2.14. Note that the map ker f → X is automatically a monomorphism. Similarly, the
map Y → coker f is automatically an epimorphism.
Remark 2.15. Thus, the image is defined by the universal property that any morphism Z → Y
such that Z → Y → coker f composes to zero factorizes uniquely through the map im f → Y .
Thus, since X f→ Y → coker f composes to zero, there is a canonical map X → im f .
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Remark 2.16. Similarly, the coimage is defined by the universal property that any morphism
X → Z for which the composition ker f → X → Z is zero factorizes uniquely through the
morphism X → coim f . Thus, since ker f → X → Y composes to zero, there is a canonical map
coim f → Y .
Remark 2.17. Furthermore, one observes that coim f → Y → coker f composes to zero: com-
posing f : X → Y with the map Y → coker f gives the zero map, and therefore by definition
the composition X ↠ coim f → Y ↠ coker f is zero, and thus since X ↠ coim f is epic we
obtain the result. Using this fact, we may apply the universal property of the image to produce
a canonical map coim f → im f . The situation is summarized in the following diagram:

ker f X Y coker f.

coim f im f

0

f

0

Remark 2.18. If we use some abusive notation, then for a morphism g : A → B we can write
coker g =: B/g(A). If g is a monomorphism, we can then abuse the notation even more and write
coker g = B/A. This notation allows us to observe that im f = ker(Y → Y/f(X)). Similarly,
coim f = X/ ker f .

Definition 2.19. An Abelian category is an additive category C such that

(a) for every morphism f in C, the kernel ker f and cokernel coker f exist, and

(b) for every morphism f in C, the canonical map coim f → im f is an isomorphism.

Remark 2.20. Using the notation from the recent remark, we then see that (b) in the above
definition essentially corresponds to a version of the first isomorphism theorem. In particular,
it asserts that X/ ker f ∼= im f .
Remark 2.21. An immediate consequence of the definition is that any morphism factors as an
epimorphism followed by a monomorphism. In particular, consider a morphism f : X → Y .
Then, by identifying im f and coim f , we obtain the commutative diagram

X Y

im f

f

which gives the desired factorization. Note that the identification of im f and coim f is impor-
tant: the first gives the monomorphism, and the second gives the epimorphism.

Using Abelian categories, we can now do some homological algebra. Actually, the following
definition works just as well in an additive category, so that’s where we will state it.

Definition 2.22. Let C be an additive category. A chain complex in C is a sequence of objects
and morphisms

· · · Ci−1 Ci Ci+1 · · ·di−1 di di+1

in C such that for all i ∈ Z, we have di+1 ◦ di = 0.
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Remark 2.23. We can also formulate the definition in a more categorical way as follows: a graded
C-object will be a functor C• : Z→ C, i 7→ Ci, where we regard Z as a discrete category, i.e. with
only identity morphisms. This assembles into a category, namely the functor category Fun(Z, C).
Now let C• ∈ Fun(Z, C). We can define, for any j, the shift C(j)• by C(j)i = Ci+j , and this
clearly extends to an automorphism Fun(Z, C) → Fun(Z, C). A chain complex is now a graded
C-object C• together with a morphism dC : C• → C(1)• such that dC(1) ◦ dC = 0. Note that
this notion is the same as a differential graded C-object. This justifies the following notational
convenience: the pair (C•, d) is a chain complex if d2 = 0.

Chain complexes in Abelian categories have cohomology. In particular, consider a chain
complex

· · · Ci−1 Ci Ci+1 · · ·di−1 di di+1

in an Abelian category A. Then we note that the requirement that d2 = 0 implies that di−1

factors through the kernel of di. In fact, since Ci−1 ↠ im di−1 is an epimorphism, this shows
that the composition im di−1 ↪→ Ci → Ci+1 is zero. Similarly, since the map im di ↪→ Ci+1

is a monomorphism, the composition Ci−1 → Ci ↠ im di is zero. In conclusion, we have the
commutative diagram (taken directly from [KS06])

im di−1 ker di

Ci−1 Ci Ci+1

coker di−1 im di

ϕ

0

di−1

0

di

ψ

Proposition 2.24. The morphism ϕ (resp. ψ) in the above diagram is a monomorphism (resp.
an epimorphism).

Proof. Consider a map z : Z → im di−1 such that ϕ◦z = 0. Composing with the monomorphism
ker di ↪→ Ci and using commutativity shows that ϕ ◦ z = 0 if and only if the composition
Z

z→ im di−1 ↪→ Ci is zero, which happens if and only if z = 0. The proof for ψ is dual. ■

Thus, we actually have a diagram

im di−1 ker di

Ci−1 Ci Ci+1.

coker di−1 im di

ϕ

0

di−1

0

di

ψ

Let ui be the composition of the morphisms ker di ↪→ Ci ↠ coker di−1. Then ϕ factors through
the kernel of ui since ui ◦ ϕ = 0 (which can be checked by using that various morphisms are
mono/epimorphisms), and the induced map im di−1 → kerui is a monomorphism (checked
similarly as before). Furthermore, there is a monomorphism kerui ↪→ im di−1 essentially by
definition of the image. Thus we have an expanded diagram of the form
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kerui

im di−1 ker di

Ci−1 Ci Ci+1

coker di−1 im di

ϕ

0

di−1

0

di

ψ

where the dashed arrows are unique in making this diagram commute. It is now easily seen that
kerui satisfies the universal property of im di−1 by using the monomorphisms im di−1 ↪→ kerui
and kerui ↪→ im di−1. Therefore, these monomorphisms are actually isomorphisms. The same
reasoning can be run in dual to finally obtain the following rather large commutative diagram,
which summarizes the situation:

kerui

im di−1 ker di

Ci−1 Ci Ci+1

coker di−1 im di

cokerui

∼

0

di−1

0

di

∼

As a result, using the fact that im ui ∼= coim ui, we have the following natural isomorphisms
(taken almost verbatim from [KS06]):

im ui ∼= ker(coker di−1 ↠ im di) ∼= ker(coker di−1 → Ci+1)
∼= coker(im di−1 ↪→ ker di) ∼= coker(Ci−1 → ker di).

Two of these isomorphisms follow by checking universal properties (and using that the appro-
priate maps are mono/epimorphisms). Finally, we can define cohomology.

Definition 2.25. Let (C•, d) be a chain complex in an Abelian category A. The cohomology
of C• at i ∈ Z is

Hi(C•) := coker(im di−1 ↪→ ker di),

or any of the other equivalent choices from above.

Remark 2.26. Notice immediately that in the case whereA = Ab, we have Hi(C•) = ker di/ im di−1.
Note that using the isomorphisms we have above, we see that

ui = 0 ⇐⇒ coker di−1 ∼−→ im di ⇐⇒ coker di−1 ↪→ Ci+1

⇐⇒ im di−1 ∼−→ ker di ⇐⇒ Ci−1 ↠ ker di ⇐⇒ Hi(C•) = 0.
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Definition 2.27. Let (C•, d) be a chain complex in an Abelian category A. We say C• is exact
at i ∈ Z if Hi(C•) = 0, i.e. if any of the above equivalent conditions are satisfied. A chain
complex is a long exact sequence (or just an exact sequence) if it is exact at every i ∈ Z. A short
exact sequence is an exact sequence of the form

0 −→ X −→ Y −→ Z −→ 0.

Using the language of Abelian categories, we can prove the following version of the first
isomorphism theorem regarding short exact sequences:

Theorem 2.28 (First isomorphism theorem). Let A be an Abelian category, and suppose we
have a short exact sequence

0 −→ X −→ Y −→ Z −→ 0

in A. Then
im(X → Y ) ∼= X and coker(X → Y ) ∼= Z.

Proof. To see the first claim, note that

im(X → Y ) = ker(Y → coker(X → Y )) ∼= coker(ker(X → Y )→ X) ∼= coker(0→ X) = X.

To see the second claim, note that we have

Z ∼= im(Y → Z) = ker(Z → coker(Y → Z))
∼= coker(ker(Y → Z)→ Y )
∼= coker(im(X → Y )→ Y ) ∼= coker(X → Y )

which completes the proof. ■

It will be important later to discuss issues of exactness in (hearts of) triangulated categories
(with t-structures). Thus, we include here the definition of an exact functor:

Definition 2.29. Let A,B be Abelian categories. An additive functor F : A → B is left (resp.
right) exact if it sends an exact sequence 0→ X → Y → Z → 0 to an exact sequence

0→ F (X)→ F (Y )→ F (Z) (resp. F (X)→ F (Y )→ F (Z)→ 0).

We say a functor is exact if it is left and right exact.

We have defined chain complexes in an Abelian category A essentially as objects C• of the
category Fun(Z,A) together with a natural transformation dC : C• → C(1)•. This makes it
quite easy to see that we can assemble this data into a category:

Definition 2.30. Let A be an Abelian category. The category of chain complexes C(A) in A is
the category in which the objects are chain complexes (C•, dC) and the morphisms are morphisms
of graded objects (i.e. natural transformations) η : A• → B• such that dB ◦ η = η(1) ◦ dA, where
η(1) denotes the induced natural transformation A(1)• → B(1)•.

Remark 2.31. Thus a morphism A• → B• is a collection of morphisms Ai → Bi fitting into the
diagram

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

d d d

d d d
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where we omit the decorations for convenience.

Proposition 2.32. The category C(A) is an Abelian category.

Proof sketch. Essentially, this just depends on the fact that for any category C, the category
Fun(C,A) is Abelian. This itself basically relies on the fact that you can essentially just check
the axioms “point-wise.” Checking that all this is compatible with the differentials on the chain
complexes is not so hard. □

Let (A•, dA) and (B•, dB) be chain complexes in an Abelian category A, and suppose we
have a morphism f : A• → B•. This will induce a morphism Hi(A•) → Hi(B•) for each i ∈ Z.
To see this, first observe that since f i+1 ◦ diA = diB ◦ f i, the composition ker diA ↪→ Ai

f i→ Bi

factors through ker diB. We then note that to get a morphism Hi(A•) → Hi(B•), it suffices to
show that the composition of the canonical morphisms

im di−1
A ↪→ ker diA → ker diB ↠ Hi(B•)

is zero. To do this, we produce a canonical morphism im di−1
A → im di−1

B . The following diagram
displays both steps:

Ai−1 im di−1
A ker diA Hi(A•)

Ai

Bi−1 im di−1
B ker diB Hi(B•)

Bi coker di−1
B .

f i−1

di−1
A

Hi(f)

f i

di−1
B

In particular, to produce the map between the images, it suffices to show that the composition

im di−1
A ↪→ ker diA → ker diB ↪→ Bi ↠ coker di−1

B

is zero. However, this follows by the commutativity of the diagram together with the fact that
the map Ai−1 ↠ im di−1

A is an epimorphism. The morphism Hi(f) : Hi(A•) → Hi(B•) then
follows by commutativity, since the composition

im di−1
A → im di−1

B ↪→ ker diB ↠ Hi(B•)

is zero. Thus we have essentially proven

Proposition 2.33. Let A be an Abelian category, and let f : A• → B• be a morphism of chain
complexes in A. Then this induces a canonical morphism

Hi(f) : Hi(A•)→ Hi(B•)

for every i ∈ Z. This data assembles into an additive functor Hi : C(A)→ A.

Proof sketch. We have provided most of the data, so we know what Hi does on objects and
morphisms. What remains to check is that it preserves composition, but this can be checked
by using that every morphism was produced by a universal property (and thus are unique

13



2.2 Abelian Categories 2 Additive & Abelian Categories

in making all the diagrams commute). The composition “on the nose” would also make the
diagrams commute, and so we must have Hi(g ◦ f) = Hi(g) ◦ Hi(f) for all f : A• → B•,
g : B• → C•. Essentially the same reasoning shows that Hi(f + g) = Hi(f) + Hi(g) for all
morphisms f, g : A• → B•. □

Finally, we will make use of the famous five lemma in several places throughout the text.
The formulation we take here is from [KS06].

Lemma 2.34. [KS06, p. 181, Lemma 8.3.13]. Let A be an Abelian category, and suppose we
have a commutative diagram

X0 X1 X2 X3

Y 0 Y 1 Y 2 Y 3

f0 f1 f2 f3

in A whose rows form a complex, and assume that X1 → X2 → X3 and Y 0 → Y 1 → Y 2 are
exact sequences.

(i) If f0 is an epimorphism and f1, f3 are monomorphisms, then f2 is a monomorphism.

(ii) If f3 is a monomorphism and f0, f2 are epimorphisms, then f1 is an epimorphism.

Corollary 2.35 (Classical five lemma). Consider a commutative diagram

X0 X1 X2 X3 X4

Y 0 Y 1 Y 2 Y 3 Y 4

with exact rows. If all vertical arrows aside from the dashed one are isomorphisms, then so is
the dashed one.

Proof. Applying (i) in Lemma 2.34, one sees the dashed arrow is a monomorphism. Applying
(ii), one sees it is an epimorphism. Therefore, since isomorphisms in Abelian categories are
exactly those which are monic and epic, this implies the dashed arrow is an isomorphism. ■
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3 Triangulated Categories

3 Triangulated Categories
Triangulated categories were introduced by Grothendieck and developed by Verdier in his 1967
thesis [Ver96]. They aim to get around the fact that derived categories and homotopy categories
of complexes fail to be Abelian by recognizing that these still maintain additivity along with
knowledge about exact sequences. Triangulated categories provide a general theory of additive
categories wherein one has “short exact sequences” which give rise to “long exact sequences”
in an appropriate sense, and furthermore allow one to have an appropriate non-trivial ambient
category for derived categories to live inside as objects (in particular, we have a notion of
triangulated functors; see Definition 3.9).

To a large extent, this section follows [KS06] although we choose slightly different con-
ventions. Some results about the Verdier quotient come from [Nee01]. The proof that the
localization of an additive category (by a suitable class of morphisms) is additive can be found
in, for example, [Kra22, p. 29, Lemma 2.2.1].

3.1 (Pre-)Triangulated Categories
Definition 3.1. Let D be a category, and let (−)[1] : D → D be an automorphism. A triangle
(X,Y, Z, u, v, w) with respect to (−)[1] is a sequence of objects X,Y, Z ∈ D and morphisms
u : X → Y , v : Y → Z, and w : Z → X[1], i.e. a diagram of the form

X Y Z X[1].u v w

A morphism of triangles (X,Y, Z, u, v, w) → (X ′, Y ′,W ′, u′, v′, w′) is a triple (f, g, h) of mor-
phisms f : X → X ′, g : Y → Y ′, and h : Z → Z ′ fitting into a commutative diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

h f [1]

u′ v′ w′

We say a triangle (X,Y, Z, u, v, w) is a candidate triangle if w ◦ v = 0 and v ◦ u = 0.

Definition 3.2. A pre-triangulated category is an additive category D together with an additive
automorphism (−)[1] : D → D, where we write (−)[n], n ∈ Z, for (−)[1] applied n times (with
(−)[−1] being the inverse of (−)[1]) and a class of triangles with respect to (−)[1] stable under
isomorphism, called distinguished triangles, satisfying

(TR1) for any X ∈ D, the triangle

X X 0 X[1]id

is a distinguished triangle, and for any morphism f : X → Y in D, there exists some Z ∈ D
(called a cone of f) and a distinguished triangle

X Y Z X[1],f

(TR2) given the two triangles
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X Y Z X[1]u v w

and

Y Z X[1] Y [1]v w −u[1]

if one is distinguished, then so is the other, and

(TR3) for any commutative diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

f [1]

u′ v′ w′

where the rows are distinguished triangles, there exists some not necessarily unique

h : Z → Z ′

such that

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

h f [1]

u′ v′ w′

commutes.

Remark 3.3. We will sometimes, although not necessarily consistently, denote a choice of Z in
(TR1) by Cf and refer to it as “the” cone. Note that the choice here is not canonical at all
(although all choices are non-canonically isomorphic, see Proposition 3.17), so this is largely
useful for remembering where the object came from. In these instances, we will sometimes write
Kf for Cf [−1] and call it a cocone.
Remark 3.4. Distinguished triangles are essentially supposed to play the role of (short) exact
sequences in Abelian categories, with the caveat that we no longer have access to kernels and
cokernels with which to actually formulate exactness. This, however, does suggest the intuition
that in a distinguished triangle

X −→ Y −→ Z −→ X[1]

one should think of X as being a kind of “weak kernel” of the map Y → Z, and of Z as being
a kind of “weak cokernel” of the map X → Y . In fact, this intuition can be made formal in
several ways: using cohomological functors, which we do in Proposition 3.20 using Proposition
3.15, and later, using t-structures, we will see (in Theorem 5.20) that in select situations these
“weak (co)kernels” are actual (co)kernels.

Definition 3.5. One says a pre-triangulated category D is triangulated if it further satisfies
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(TR4) if there are three distinguished triangles
X

u−→ Y −→ Z −→ X[1]
X

v◦u−→ Y ′ −→ Z ′ −→ X[1]
Y

v−→ Y ′ −→ Y ′′ −→ Y [1]

then there exists f : Z → Z ′, g : Z ′ → Y ′′, and h : Y ′′ → Z[1] such that

X Y Z X[1]

X Y ′ Z ′ X[1]

Y Y ′ Y ′′ Y [1]

Z Z ′ Y ′′ Z[1]

u

v f

v◦u

u g u[1]

v

f g h

commutes, and the bottom row

Z Z ′ Y ′′ Z[1]f g h

is a distinguished triangle. This axiom is sometimes called the octahedral axiom, since it
is possible to assemble the above data into a diagram shaped like an octahedron.

Remark 3.6. We can, and frequently will, write the diagram in (TR4) as

Z

Y Z ′

Y ′

X Y ′′

f

g

h

where we note that we omit the shift operations.
Remark 3.7. We can think of (TR4) as giving us a prefered choice of morphism h in (TR3)
in certain situations to make up for the fact that taking cones is not functorial. In particular,
suppose we have a map u : X → Y and a map v : Y → Y ′. We then complete these to
distinguished triangles X → Y → Cu and Y → Y ′ → Cv and note that we have the following
diagram of solid arrows

X Y Cu X[1]

Y Y ′ Cv Y [1]

u

u v h u[1]

v
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which then allows us, via (TR3), to obtain the dashed arrow h : Cu → Cv giving us a morphism
of distinguished triangles. However, since we lack functoriality, we have no information on how
this relates to the cone of v ◦ u, thereby leaving us with very few compatibility relations. The
octahedral axiom (TR4) ameliorates this by allowing us to take h in (TR3) as the composition
g ◦ f of morphisms f : Cu → Cv◦u and g : Cv◦u → Cv sitting in the diagram

X Y Cu X[1]

X Y ′ Cv◦u X[1]

Y Y ′ Cv Y [1]

Cu[1]

u

v f

v◦u

u g u[1]

v

thereby giving us a relation between the cones of u, v and v ◦ u.
Remark 3.8. The interpretation of cones as “weak cokernels” suggests another intuition for
(TR4). Consider the situation in (TR4), and informally write Z = Y/X, Z ′ = Y ′/X, and
Y ′′ = Y ′/Y , as indicated by pretending these are all short exact sequences. Then (TR4) gives
us a “short exact sequence” identifying the fact that

(Y/X)/(Y ′/X) = Y/Y ′.

That is, (TR4) can be thought of as saying that the third isomorphism theorem is true. Compare
this with the fact that one of the axioms of Abelian categories is that the first isomorphism
theorem is true.

Definition 3.9. Let D and D′ be two triangulated categories. A triangulated functor is an
additive functor F : D → D′ such that there is a natural isomorphism F ◦ [1]D ∼= [1]D′ ◦ F , and
for all distinguished triangles

X −→ Y −→ Z −→ X[1]

in D, the triangle
F (X) −→ F (Y ) −→ F (Z) −→ F (X)[1]

obtained by applying F and using that F (X[1]) ∼= F (X)[1] is a distinguished triangle in D′.

Definition 3.10. Let D be a triangulated category. A subcategory C in D together with a
triangulated structure is a triangulated subcategory if the inclusion C ↪→ D is a triangulated
functor.

Proposition 3.11. Let D and E be two triangulated categories, and let F : D → E be a tri-
angulated functor. If G : E → D is a left or right adjoint to F , then G is also a triangulated
functor.

Proof sketch. For a full proof, see [Nee01, Lemma 5.3.6]. We sketch this in the case where G is
right adjoint to F . Let X ∈ E , Y ∈ D. Then we have isomorphisms, natural in X and Y ,

HomD(Y,G(X[1])) ∼= HomE(F (Y ), X[1]) ∼= HomE(F (Y )[−1], X)
∼= HomE(F (Y [−1]), X) ∼= HomD(Y [−1], G(X)) ∼= HomD(Y,G(X)[1]).
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By the Yoneda lemma, this gives a natural isomorphism G ◦ [1] ∼= [1] ◦ G. We prove that G
preserves distinguished triangles by using the five lemma (Corollary 2.35). In particular, consider
a distinguished triangle

X −→ Y −→ Z −→ X[1]

in E . Applying G to the morphism X → Y and taking the cone, we obtain a distinguished
triangle

G(X) −→ G(Y ) −→ C −→ G(X)[1].

Applying F gives a distinguished triangle

F (G(X)) −→ F (G(Y )) −→ F (C) −→ F (G(X))[1]

in E and one now makes use of the counit F ◦G→ id and (TR3) to produce a morphism to the
original distinguished triangle. The new map F (C) → Z then defines a map HomD(W,C) →
HomE(F (W ), Z) which is an isomorphism by the five lemma. □

Having a pre-triangulated structure allows us to, in an elementary way, define the notion of
cohomological functors. In particular, a distinguishing property of cohomology is that it turns
short exact sequences into long exact sequences. The structure on a pre-triangulated category
consists exactly of information that allows us to formalize this. The distinguished triangles play
the role of the short exact sequences, and the shift allows us to extend this to long sequences.

Definition 3.12. Let D be a pre-triangulated category, and let A be an Abelian category. An
additive functor F : D → A is cohomological if for any distinguished triangle X → Y → Z →
X[1], the sequence

F (X) −→ F (Y ) −→ F (Z)

in A is exact.

Remark 3.13. Here is an explicit way to see that this definition makes sense. Consider a distin-
guished triangle as above. We may extend it to a sequence of morphisms

· · · −→ Y [−1] −→ Z[−1] −→ X −→ Y −→ Z −→ X[1] −→ Y [1] −→ · · ·

which after applying F gives a sequence

· · · −→ F (Y [−1]) −→ F (Z[−1]) −→ F (X) −→ F (Y ) −→ F (Z) −→ F (X[1]) −→ F (Y [1]) −→ · · ·

and the requirement that F is cohomological is exactly that this sequence of morphisms is a
long exact sequence (at least after potentially switching signs in some places). If we temporarily
write Fn := F ◦ [n], then this has the form

· · · −→ F−1(Y ) −→ F−1(Z) −→ F 0(X) −→ F 0(Y ) −→ F 0(Z) −→ F 1(X) −→ F 1(Y ) −→ · · ·

which is suggestive when compared with the classical long exact sequence in cohomology from
topology or geometry.

If cohomological functors are to be reasonable, then there should exist reasonable examples.
The following proposition is an important result which says that all objects of D induce a
cohomological functor via the Yoneda embedding. One can think of it as a kind of “triangulated
Yoneda lemma.”

Lemma 3.14. Let D be a pre-triangulated category, and consider a distinguished triangle
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X Y Z X[1].f g

Then g ◦ f = 0.

Proof. By (TR1) and (TR3), we have a morphism of triangles

X X 0 X[1]

X Y Z X[1]

id

id f id
f g

which, by commutativity, gives that g ◦ f = 0. ■

Proposition 3.15. Let D be a pre-triangulated category. Then, for any X ∈ D, the functors

HomD(X,−) : D → Ab and HomD(−, X) : Dop → Ab

are cohomological.

Proof. Fix a distinguished triangle

X Y Z X[1]f g

and an object E ∈ D. We need to show that

HomD(E,X) HomD(E, Y ) HomD(E,Z)f◦ g◦ (1)

and
HomD(Z,E) HomD(Y,E) HomD(Z,E)◦g ◦f (2)

are exact. Lemma 3.14 immediately gives that im(f◦) ⊆ ker(g◦) and im(◦g) ⊆ ker(◦f). Thus,
we just need to show the other inclusions. Let ϕ ∈ HomD(E, Y ) and suppose that g ◦ ϕ = 0.
We need to produce a map hϕ ∈ HomD(E,X) such that ϕ = f ◦ hϕ. However, this follows by
applying (TR2) and (TR3) in order to obtain hϕ as the leftmost dashed arrow in the below
morphism of triangles:

E E 0 E[1]

X Y Z X[1]

id

hϕ ϕ hϕ[1]
f g

This proves (1) is exact. Dually, suppose we have ψ ∈ HomD(Y,E) and ψ ◦ f = 0. We need to
find some hψ ∈ HomD(Z,E) such that ψ = hψ ◦ g. We again use (TR2) and (TR3) to obtain
hψ as the dashed arrow in the morphism of triangles

X Y Z X[1]

0 E E 0

f g

ψ hψ

id

This proves (2) is exact. ■
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Remark 3.16. Proposition 3.15 is particularly important due to how frequently it is used in
proofs. It allows us to turn a potentially difficult problem in a (pre-)triangulated category
D into a concrete, comparatively easy problem in the category Ab of Abelian groups. More
precisely, it makes it possible to relatively easily transfer results from standard homological
algebra to analogous results about triangulated categories in the same way that the Yoneda
lemma makes it possible to turn set theoretical results into categorical results.

An immediate and incredibly useful application of Proposition 3.15 is the following result,
which can be thought of as the triangulated version of the five lemma from homological algebra
(see Lemma 2.34 or Corollary 2.35). In particular, the five lemma states that in a the situation
of a morphism of two exact sequences of length five, if all component morphisms aside from the
middle are known to be isomorphisms, then the middle is also an isomorphism. The triangulated
version says this, but for distinguished triangles.

Proposition 3.17. Let D be a pre-triangulated category. If, in a morphism

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h

of distinguished triangles, the morphisms f and g are isomorphisms, so is h.

Proof. Let W ∈ D. For notational convenience, we will write hW (−) for HomD(W,−). By
Proposition 3.15, we have a commutative diagram, whose rows are exact, of the form

hW (X) hW (Y ) hW (Z) hW (X[1]) hW (Y [1])

hW (X ′) hW (Y ′) hW (Z ′) hW (X ′[1]) hW (Y ′[1])

f◦ g◦ h◦ f [1]◦ g[1]◦

in Ab, where all solid vertical arrows are isomorphisms. It then follows by the five lemma that
(h◦) : HomD(W,Z) → HomD(W,Z ′) is an isomorphism for all W ∈ D, and therefore h is an
isomorphism by the Yoneda lemma. ■

Proposition 3.15 also allows us to prove the following lemma, which will be of use later.

Lemma 3.18. Let D be a pre-triangulated category. There exists a distinguished triangle

X
f−→ Y −→ 0 −→ X[1]

if and only if the map f : X → Y is an isomorphism.

Proof. (=⇒) Shift the triangle to the right to obtain a morphism of triangles

0 X X 0

0 X Y 0
id f

f

where all vertical arrows are known to be isomorphisms aside from f . By Proposition 3.17, this
implies the dashed arrow, i.e. f , is an isomorphism.

(⇐=) If f is an isomorphism, then playing the same argument as above in reverse and using
that distinguished triangles are closed under isomorphisms yields the result. ■
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As promised in Remark 3.4, we will now explain how to give a precise way in which distin-
guished triangles give “weak kernel/cokernel pairs.” In particular, we first make the following
definitions:

Definition 3.19. Let D be a pre-triangulated category, and let u : X → Y be a morphism. A
weak cokernel for u is an object C ∈ D together with a morphism v : Y → C such that for any
W ∈ D and map ϕ : Y → W such that ϕ ◦ u = 0, there exists some (not necessarily unique!)
ψ : C →W such that ϕ = ψ ◦ v, i.e. for any diagram of solid arrows as below, there exists some
dashed arrow completing it:

X Y C

W

u

0

v

ϕ
ψ

A weak kernel for u is defined dually.

Using Proposition 3.15, we then immediately have the following proposition, confirming the
intuition from Remark 3.4.

Proposition 3.20. Let D be a pre-triangulated category, and consider a distinguished triangle

X Y Z X[1].u v

Then Z together with v is a weak cokernel for u and X together with u is a weak kernel for v.

Proof. Let W ∈ D. Suppose we have a map ϕ : Y → W such that ϕ ◦ u = 0. Then, since
ϕ ∈ ker(◦u), Proposition 3.15 tells us that there is some ψ : Z → W such that ϕ = ψ ◦ u.
Therefore, Z is a weak cokernel for u.

Dually, let ψ : W → Y be a map such that v ◦ ψ = 0. Then, since ψ ∈ ker(v◦), Proposition
3.15 tells us that there is some ϕ : W → X such that ψ = u ◦ ϕ. Therefore, X is a weak kernel
for v. ■

Remark 3.21. One sometimes says that weak (co)kernels that lie in distinguished triangles are
homotopy (co)kernels for the appropriate morphisms.

Since all (pre-)triangulated categories are additive by definition, they admit finite direct
sums. We should hope that this additive structure is respected by the triangulated structure,
and in particular, we should hope that the direct sum of two distinguished triangles is again a
distinguished triangle. This is true, and will be important later.

Proposition 3.22. Let D be a triangulated category. Consider two distinguished triangles

X Y Z X[1],

X ′ Y ′ Z ′ X ′[1].

u v w

u′ v′ w′

Then the triangle

X ⊕X ′ Y ⊕ Y ′ Z ⊕ Z ′ X[1]⊕X ′[1]

(
u 0
0 u′

) (
v 0
0 v′

) (
w 0
0 w′

)
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is a distinguished triangle.

Proof. By (TR1), we have a distinguished triangle

X ⊕X ′ Y ⊕ Y ′ U X[1]⊕X ′[1].

By (TR3), we have maps Z → U , Z ′ → U sitting in the commutative diagram

X Y Z X[1]

X ⊕X ′ Y ⊕ Y ′ U X[1]⊕X ′[1]

X ′ Y ′ Z ′ X ′[1],

which induces a map Z ⊕ Z ′ → U . Therefore, we have a diagram

X ⊕X ′ Y ⊕ Y ′ U X[1]⊕X ′[1]

X ⊕X ′ Y ⊕ Y ′ Z ⊕ Z ′ X[1]⊕X ′[1].

Let W ∈ D, and for convenience write X ′′ = X ⊕ X, Y ′′ = Y ⊕ Y ′, and Z ′′ = Z ⊕ Z ′.
By Proposition 3.15, HomD(−,W ) is cohomological, and therefore—using (TR2)—we obtain a
diagram

Hom(Y ′′[1],W ) Hom(X ′′[1],W ) Hom(U,W ) Hom(Y ′′,W ) Hom(X ′′,W )

Hom(Y ′′[1],W ) Hom(X ′′[1],W ) Hom(Z ′′,W ) Hom(Y ′′,W ) Hom(X ′′,W )

in Ab where the top row is exact, and all morphisms are isomorphisms aside from the dashed
one. The lower row is seen to be exact by commuting the direct sums with Hom and using that
the triangles we started with are distinguished, i.e. the bottom row is isomorphic to the direct
sum of the exact sequences

Hom(Y [1],W ) −→ Hom(X[1],W ) −→ Hom(Z,W ) −→ Hom(Y,W ) −→ Hom(X,W )

and

Hom(Y ′[1],W ) −→ Hom(X ′[1],W ) −→ Hom(Z ′,W ) −→ Hom(Y ′,W ) −→ Hom(X ′,W ).

Then, by the five lemma, the dashed arrow is also an isomorphism, which shows that HomD(Z ′′,−) ∼=
HomD(U,−), so Z ⊕ Z ′ = Z ′′ ∼= U . Since distinguished triangles are closed under isomorphism,
this implies that

X ⊕X ′ Y ⊕ Y ′ Z ⊕ Z ′ X[1]⊕X ′[1].

is distinguished. ■

By applying Proposition 3.22 to the distinguished triangles X → X → 0 → X[1] and
0 → Y → Y → 0, we obtain the following corollary, which will be important, for example, in
the proof of Theorem 5.20.
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Corollary 3.23. Let D be a triangulated category. For any X,Y ∈ D, the triangle

X X ⊕ Y Y X[1]ιX πY 0

is a distinguished triangle.

Remark 3.24. By induction, Proposition 3.22 extends to cover all finite direct sums of distin-
guished triangles. However, through an essentially identical proof, it is possible to show that for
any indexing set I, if direct sums indexed by I exist, then direct sums of distinguished triangles
indexed by I are distinguished. For an explicit proof of this, see [KS06, p. 247, Prop. 10.1.19].

3.2 Issues of Uniqueness
There are various aspects in triangulated categories where uniqueness is not guaranteed. No-
tably, in (TR3), we do not obtain a unique morphism h in the diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h f [1]

which is also what causes cones to not be functorial. In particular, while (TR3) gives us a
weak kind of functoriality and (TR4) gives us distinguished choices satisfying some natural
commutative diagram relating f , g, and g ◦ f , at no point are these choices the only ones.
However, it is possible in some situations to have a unique choice (and hence also a unique
choice of cone, up to unique isomorphism of triangles).

Here is a simple condition for uniqueness:

Proposition 3.25. Let D be a pre-triangulated category and suppose we have two distinguished
triangles with morphisms

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1].

g h

ψϕ

f ′
h′

where ϕ and ψ are two possible choices of morphisms induced by (TR3). If HomD(X[1], Z ′) = 0
or HomD(Z, Y ′) = 0, then ϕ = ψ.

Proof. Given distinguished triangles and morphisms as above, we observe that

ϕ ◦ g = ψ ◦ g and h′ ◦ ϕ = h′ ◦ ψ

so that
(ϕ− ψ) ◦ g = 0 and h′ ◦ (ϕ− ψ) = 0.

By the weak kernel property of Y ′ → Z ′ and the weak cokernel property of Z → X[1], this
implies we have (not necessarily unique) maps α : Z → Y ′ and β : X[1]→ Z ′ such that

g′ ◦ α = β ◦ h = ϕ− ψ.

However, if either of the conditions in the proposition statement hold, then this implies

ϕ− ψ = 0 =⇒ ϕ = ψ

as desired. ■
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Another, more complicated condition is the following:

Proposition 3.26. Let D be a pre-triangulated category, and consider a diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

f

v

g

w

h f [1]

u′ v′ w′

of solid arrows where the rows are distinguished, and assume further that HomD(Y,X ′) = 0 and
HomD(X[1], Y ′) = 0. Then the dashed morphism h induced by (TR3) is unique.

Proof. It suffices to show that when f = 0 and g = 0, h = 0. In particular, if h1 and h2 are
choices for h when f, g are arbitrary, then h1 − h2 will be choices for when f = g = 0, so we
would have h1 − h2 = 0 yielding the general result.

Thus, assume f = g = 0. By Proposition 3.20, X[1] together with w is a weak cokernel for
v, and Y ′ together with v′ is a weak kernel for w′. We have that w′ ◦ h = 0, so since Y ′ is a
weak kernel there is some p : Z → Y ′ such that h = v′ ◦ p. Similarly, h ◦ v = 0 so X[1] being a
weak cokernel tells us that there is some q : X[1] → Z ′ such that h = q ◦ w. We therefore have
the following (not necessarily commutative) diagram of solid arrows:

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u

0

v

0r

w

h
p

0
q

u′ v′ w′

We conclude the existence of the dashed arrow r : Y → X ′ using (TR2) and (TR3), by placing
it in the following commutative diagram:

Y Z X[1] Y [1]

X ′ Y ′ Z ′ X ′[1]

v

r

w

p

−u′[1]

q r[1]

u′ v′ w′

By assumption, r = 0 since it is a map Y ′ → X. However, by commutativity, this implies that

p ◦ v = u′ ◦ r = u′ ◦ 0 = 0

and since X[1] is a weak cokernel, this means that there is a map s : X[1] → Y ′ such that
p = s ◦ w. However, by assumption we have that HomD(X[1], Y ′) = 0, so s = 0. Therefore,
p = 0, and since h = v′ ◦ p we get that h = 0. ■

Corollary 3.27. Let D be a pre-triangulated category, let X,Y ∈ D, and let u : X → Y be a
morphism. Suppose that HomD(Y,X) = 0 and HomD(X[1], Y ) = 0. Then the cone Cu in the
distinguished triangle

X Y Cu X[1]u

is unique up to unique isomorphism of triangles.

Proof. If Z is any other choice of cone, then it is clear that it sits in a commutative diagram
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X Y Cu X[1]

X Y Z X[1]

u

u

where all vertical arrows are isomorphisms. However, the assumptions allow us to deduce (using
the above proposition) that this isomorphism is unique. ■

The above gives a criterion which guarantees uniqueness of the cone construction in select
circumstances. There are other ways in which non-uniqueness arises in triangulated categories,
however. For example, consider a distinguished triangle

X −→ Y −→ Z −→ X[1].

We can wonder if there any other distinguished triangles which contain the sequence

X −→ Y −→ Z,

or rather, if the morphism Z → X[1] is unique in this regard. In general, we have no way of
knowing this. However, with a relatively mild assumption, we can obtain the following lemma
(which will be used later in the proofs of several results in Section 5):

Lemma 3.28. Let D be a triangulated category, and consider two distinguished triangles

X Y Z X[1]f g hi

i = 1, 2. If HomD(X[1], Z) = 0, then h1 = h2.

Proof. By (TR3), we have some morphism ϕ : Z → Z such that

X Y Z X[1]

X Y Z X[1]

f g h1

ϕ

f g h2

commutes. Therefore, we have that h1 = h2 ◦ϕ and ϕ◦g = g, so (id−ϕ)◦g = 0. By Proposition
3.20, X[1] together with h1 is a weak cokernel for g, and therefore there exists some ψ : X[1]→ Z
such that ψ ◦ h1 = id− ϕ. By assumption, ψ = 0, and hence ϕ = id, from which we obtain that
h1 = h2. ■

3.3 Localization of Categories
It is useful, in certain contexts, to impose upon a category additional relations that cause
previously non-invertible morphisms to become invertible. The most obvious example of this
will be expounded upon in Section 4, where we construct derived categories, i.e. categories
formed by formally inverting quasi-isomorphisms in categories of chain complexes.

Definition 3.29. Let C be a category, and let S be a class of morphisms in C. A (big) category
D together with a functor Q : C → D is a (strict) localization of C at S if

(i) for all morphisms f ∈ S, the morphism Q(f) is an isomorphism in D,

(ii) for all (big) categories E with a functor G : C → E which sends morphisms in S to
isomorphisms in E , there is a unique functor G′ : D → E such that G = G′ ◦Q.
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When such a localization exists, we denote it by CS , and the functor G′ above is denoted by GS .

Remark 3.30. There is also a notion of “weak” localization, where one replaces the above 1-
categorical definition with the appropriate 2-categorical version, and this is the definition which
[KS06] uses. We take the simpler 1-categorical definition because it will be more convenient for
our purposes. This will not be a problem, since a strict localization is automatically a weak
localization. In particular, the localization as defined above also satisfies the following stronger
version of (ii): the functor Q induces an isomorphism of categories

(◦Q) : Fun(CS , E) ∼−→ FunS(C, E)

where FunS(C, E) denotes the full subcategory of Fun(C, E) consisting of functors sending mor-
phisms in S to isomorphisms in E . In a weak localization, this is merely an equivalence.
Remark 3.31. When a localization exists, it is unique up to isomorphism of categories. Note that
in the 2-categorical case, this is not true: a weak localization is only defined up to equivalence
of categories.
Remark 3.32. Even when C is a locally small category, the localization CS does not need to be
locally small.

In general, the localization CS is complicated to describe. However, if we place some restric-
tions on S, then one can give a relatively simple description. To give some motivation first,
note that in the situation of (for example) rings, localization can also be defined essentially as
above, using a universal property. However, it is not until we impose that the localizing class is
multiplicative that one has a good description in terms of fractions. Thus, we want to have the
same thing for categories.

Definition 3.33. Let C be a category, and let S be a class of morphisms in C. The class S is a
right multiplicative system if it satisfies the following criteria:

(M1) any isomorphism in C is also in S,

(M2) for any two morphisms (f : X → Y ), (g : Y → Z) ∈ S, we also have g ◦ f ∈ S,

(M3) given a morphism f : X → Y in C and a morphism s : X → X ′ in S, there is some
t : Y → Y ′ in S and g : X ′ → Y ′ which fit into a commutative diagram

X Y

X ′ Y ′

f

s ∃t
∃g

(M4) for any two parallel morphisms f, g : X → Y in C, if there exists a morphism s : W → X in
S such that f ◦s = g◦s, then there exists a morphism t : Y → Z in S such that t◦f = t◦g,
i.e. we have the commutative diagram

W X Y Z.s
f

g

∃t

A class of morphisms S is a left multiplicative system if Sop is a right multiplicative system
in Cop. A class of morphisms is a multiplicative system if it is left multiplicative and right
multiplicative.
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Remark 3.34. The above definition follows the naming scheme of [KS06, p. 151–152, Definition
7.1.5]. In a remark (specifically, Remark 7.1.7), the authors warn that this terminology is not
universal. In particular, some resources swap the names (so that our left multiplicative systems
are their right multiplicative systems).

We will now define several categories of interest.

Definition 3.35. Let C be a category, and let S be a class of morphisms satisfying (M1) and
(M2) above. Fix some X ∈ C. Define the categories S/X , SX/, and functors π/X : S/X → C,
πX/ : SX/ → C as follows:

S/X := {s : X ′ → X | s ∈ S},

HomS/X ((s : X ′ → X), (t : X ′′ → X)) :=

f ∈ HomC(X ′, X ′′)

∣∣∣∣∣∣∣∣∣
X ′ X ′′

X

f

s t
commutes

 ,
SX/ := {s : X → X ′ | s ∈ S},

HomSX/((s : X → X ′), (t : X → X ′′)) :=

f ∈ HomC(X ′, X ′′)

∣∣∣∣∣∣∣∣∣
X

X ′ X ′′

s t

f

commutes

 ,
π/X(s : X ′ → X) := X ′,

πX/(s : X → X ′) := X ′.

Remark 3.36. Here, our notation differs from [KS06]. In particular, what we call SX/ and S/X ,
they call SX and SX . They also refer to the projection functors πX/ and π/X as αX and αX .

In the situation that S is a (left/right) multiplicative system, we will use the above categories
to make a workable construction of the localization CS . In particular, for S a right (resp. left)
multiplicative system, we will define a category CrS (resp. ClS), which will give the localization.

Definition 3.37. Let C be a category, and let S be a right multiplicative system. For ∗ ∈ {l, r},
let the objects of C∗

S simply be the objects of C. Define the Hom-sets

HomCrS (X,Y ) := lim−→HomC(X,πY/(−)) = lim−→
(Y→Y ′)∈SY/

HomC(X,Y ′).

When S is instead a left multiplicative system, define the Hom-sets

HomClS
(X,Y ) := lim−→HomC(π/X(−), Y ) = lim−→

(X′→X)∈S/X

HomC(X ′, Y ).

We want to make sure that this defines an actual category (note that we need to define
composition). To do this, we will explicitly compute these colimits. To do that, we first make
the observation that whenever S is a right (resp. left) multiplicative system, the category SX/
(resp. S/X) is filtered (resp. cofiltered; see [KS06, p. 72, Def. 3.1.1]) for any X ∈ C.

Proposition 3.38. Let C be a category, and let S be a right (resp. left) multiplicative system.
Then, for any X ∈ C, the category SX/ (resp. S/X) is filtered (resp. cofiltered).

Proof. We prove only the case when S is a right multiplicative system, since the proof in the
other case is dual.
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Certainly, SX/ is non-empty, since idX ∈ SX/ by (M1). Now let

(x′ : X → X ′), (x′′ : X → X ′′) ∈ SX/.

By (M3), we then find that there exists an object X ′′′ and morphisms s : X ′ → X ′′′, g : X ′′ → X ′′′

with s ∈ S fitting into the commutative diagram

X X ′

X ′′ X ′′′

x′

x′′ s

g

and by (M2), we have s ◦ x′ ∈ S, hence (X s◦x′
−→ X ′′′) ∈ SX/.

Finally, consider two parallel arrows f, g : x′ → x′′, i.e. maps in C fitting into the commutative
triangle

X

X ′ X ′′

x′ x′′

f

g

We then observe that (M4) provides us with an object X ′′′ and a morphism t : X ′′ → X ′′′ which
makes the diagram

X X ′ X ′′ X ′′′x′ f

g

t

commute. Since x′′ ∈ S, we have t ◦ x′′ ∈ S, which makes x′′′ := t ◦ x′′ an element of SX/. The
map t : x′′ → x′′′ then satisfies the desired requirement that t ◦ f = t ◦ g. ■

When the indexing category of a colimit of sets is filtered, we have a good description of it.
In particular, we get the following:

HomCrS (X,Y ) = {(Y ′, s, f) | (s : Y → Y ′) ∈ SY/, f : X → Y ′}/ ∼

where ∼ is the equivalence relation given by (Y ′, s, f) ∼ (Y ′′, t, g) if and only if there exists
(Y u−→ Y ′′′) ∈ SY/, q′ : Y ′ → Y ′′′, q′′ : Y ′′ → Y ′′′, fitting into a commutative diagram

Y

Y ′ Y ′′′ Y ′′

X

s u t

q′ q′′

f g

which, one notes, also defines an element (Y ′′′, u, h) ∈ HomCrS (X,Y ), where h = q′ ◦ f = q′′ ◦ g.
The situation for left multiplicative systems is similar. In particular, one sees that

HomClS
(X,Y ) = {(X ′, s, f) | (s : X ′ → X) ∈ S/X , f : X ′ → Y }/ ∼

where ∼ is the equivalence relation given by (X ′, s, f) ∼ (X ′′, t, g) if and only if there exists some
(X ′′′ u−→ X) ∈ S/X together with maps r′ : X ′′′ → X ′, r′′ : X ′′′ → X ′′ fitting into a commutative
diagram
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Y

X ′ X ′′′ X ′′

X

f g

r′ r′′

u
s t

Similarly, this diagram too defines an element of HomClS
(X,Y ) given by (X ′′′, u, h), where h =

f ◦ r′ = g ◦ r′′.
We now define the composition. Consider a right multiplicative system S, and let (Y ′, s, f) ∈

HomCrS (X,Y ), (Z ′, t, g) ∈ HomCrS (Y,Z). We then have a diagram

Y ′ Z ′

X Y Z

f

s

g

t

and using (M3) on the maps s, g, we obtain some object W along with maps h : Y ′ → W ,
u : Z ′ →W , with u ∈ S fitting into the following commutative diagram

W

Y ′ Z ′

X Y Z

h u

f s g t

and we set
(Y ′, s, f) ◦ (Z ′, t, g) := (W,h ◦ f, u ◦ t).

This gives a well-defined notion of composition. Checking that this is well-defined is essen-
tially elementary, but requires drawing quite a large diagram so we omit it. The situation for
a left multiplicative system is entirely dual, so we also skip writing that down. Thus, we have
defined a category CrS (when S is right multiplicative; ClS when S is left multiplicative). When
S is both left and right multiplicative, one may use (M3) to give maps

HomCrS (X,Y ) HomClS
(X,Y )

which are natural bijections, so that in that situation we obtain an equivalence

CrS ∼= ClS .

More explicitly, consider a morphism X
f−→ Y ′ s←− Y in CrS . Using (M3), but now for the left

case, we then obtain the following diagram

X Y ′

X ′ Y

f

f ′
s′ s
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which defines a morphism (X ′, s′, f ′) in ClS . The other direction is dual. That this gives a natural
bijection

HomCrS (X,Y ) ∼= HomClS
(X,Y )

is clear.
Remark 3.39. One may show much of the above more systematically by defining the composition
using universal properties, as is done in [KS06]. We opt for the above approach since the precise
details are not of too much interest to us.

Notation 3.40. Consider a morphism

X Y ′ Y
f s

in CrS . We will sometimes write s−1f to denote this, particularly when the maps f and s are
clear. Similarly, a morphism

X X ′ Ys f

in ClS will sometimes be denoted fs−1.

Definition 3.41. Let C be a category, and let S be a right (resp. left) multiplicative system.
Then we define the localization functor

Q = QrS : C → CrS (resp. QlS : C → ClS)

by QrS(X) = X, and QrS(X f−→ Y ) = (Y, idY , f) (resp. QlS(X) = X, QlS(f) = (X, idX , f)).
When no confusion is possible, we write Q = QrS = QlS .

Pictorially, QrS sends a morphism f : X → Y to the diagram

X Y Y.
f idY

It can be checked that when S is a multiplicative system, the equivalence CrS ∼= ClS briefly
described is compatible with the functors QrS and QlS in the sense that the diagram

CrS

C

ClS

QrS

QlS

commutes strictly. Indeed, denoting by F : CrS → ClS and G : ClS → CrS the above described
equivalences, it is easily seen that

(F ◦QrS)(X f−→ Y ) = F (X f−→ Y
id←− Y )

= (X, id, f),

(G ◦QlS)(X f−→ Y ) = G(X id←− X f−→ Y )
= (Y, id, f)

so that F ◦QrS = QlS and G ◦QlS = QrS .
The way to think about the localization CrS is that the diagram

31



3.3 Localization of Categories 3 Triangulated Categories

X Y ′ Y
f s

represents the composition “s−1 ◦ f” even though this may not exist. However, we will see that
it does make clear the fact that it describes the composition

Q(s)−1 ◦Q(f).

We will now check that these categories are actually localizations.

Proposition 3.42. Let C be a category, and let S be a right (resp. left) multiplicative system.
Then CrS (resp. ClS) together with QrS (resp. QlS) is a localization of C at S. In particular, any
morphism

X
f−→ Y ′ s←− Y

in CrS can be written as Q(s)−1 ◦Q(f).

Proof. We show only the case when S is right multiplicative. First we show that morphisms in S
are sent to isomorphisms by Q. Consider a map s : X → Y in S, and note that Q(s) = (Y, idY , s).
Let t : Q(Y )→ Q(X) be the morphism in CrS defined by (Y, s, idX). Then

t ◦Q(s) = (X s−→ Y
s←− X), Q(s) ◦ t = (Y id−→ Y

id←− X) = idQ(Y ).

Thus it remains to show that (Y, s, s) = idQ(X). However, this is clear from the following
diagram:

X

Y Y X

X

s s id

id s

s id
s

Thus, Q sends morphisms in S to isomorphisms in CrS .
Consider now an arbitrary category E along with a functor G : C → E such that G(s) is an

isomorphism for all s ∈ S. Define a functor GS : CrS → E as follows:

GS(X) := G(X), GS(X f−→ Y ′ s←− Y ) := G(s)−1 ◦G(f).

This is well-defined. In particular, suppose we have two representatives (Y ′, s, f), (Y ′′, s′, f ′) of
the map given above. Them being equivalent yields a third representative (Y ′′′, s′′, f ′′) fitting
into the diagram

Y ′

X Y ′′′ Y

Y ′′

qf

f ′′

f ′

s′′

s

s′q′
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from which we calculate

G(s)−1 ◦G(f) = G(s′′)−1 ◦G(q) ◦G(f)
= G(s′′)−1 ◦G(f ′′)
= G(s′′)−1 ◦G(q′) ◦G(f ′)
= G(s′)−1 ◦G(f ′).

Thus, GS does not depend on the representative chosen for a morphism in CrS . Furthermore, if
we have two morphisms

X
f−→ Y ′ s←− Y, Y

g−→ Z ′ t←− Z

then the diagram

W

Y ′ Z ′

X Y Z

h u

f s g t

defining the composition tells us that

GS((Z ′, t, g) ◦ (Y ′, s, f)) = G(u ◦ t)−1 ◦G(h ◦ f)
= G(t)−1 ◦G(u)−1 ◦G(h) ◦G(f)
= G(t)−1 ◦G(g) ◦G(s)−1 ◦G(f)
= GS((Z ′, t, g)) ◦GS((Y ′, s, f))

so GS does define a functor. It is immediately clear that GS ◦Q = G. It remains to check that
GS is unique. Suppose we have another functor G′ : CS → E such that G′ ◦ Q = G. Then it is
clear that GS and G′ agree on objects. Furthermore, for any morphism s−1f : X f−→ Y ′ s←− Y
in CS , we know that G′ must satisfy G′(s−1f) = G′(Q(s)−1◦Q(f)) = G(s)−1◦G(f) = GS(s−1f),
and therefore G′ = GS . ■

Thus we see that the category CrS is the localization, and we may happily denote it CS . The
upside of having done all the above work is that we now have an explicitly workable theory
of localization which we may then apply to triangulated categories. Shortly, when we involve
triangulated categories, we will need that localizations of additive categories are additive, and
that the localization functor is an additive functor. Showing this requires some theorems in
abstract nonsense. Our strategy will be to show that localization is well-behaved with respect
to products and adjoints.

If we have categories C and D equiped with classes of morphisms S and T , then a functor
F : C → D such that F (S) ⊆ T induces a functor CS → DT (in particular, by applying condition
(ii) from the definition of localization to QT ◦ F ). In particular, this lies in the commutative
diagram

C D

CS DT

F

QS QT

We need the following:
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Proposition 3.43. Let C and D be categories, and let S (resp. T ) be a class of morphisms in C
(resp. D). Suppose we have functors L : C → D, R : D → C such that L is left adjoint to R and
L(S) ⊆ T , R(T ) ⊆ S. Denote by LS : CS → DT , RT : DT → CS the induced functors described
above. Then LS is left adjoint to RT .

Proof. We will use the characterization of adjoints as absolute Kan extensions (see [Rie17, Ch.
6], especially Prop. 6.5.2). In particular, we will show that RT = LanLS idCS and that this holds
absolutely, i.e. that G ◦RT = LanLS (G). We need to show that we have a natural isomorphism

Hom(G,F ◦ LS) = Hom(G ◦RT , F )

for all categories E with functors G : CS → E , F : DT → E . Since L is left adjoint to R (i.e. R
is right adjoint to L), we know that these satisfy analogous conditions. Therefore, we have the
following natural isomorphisms:

Hom(G,F ◦ LS) ∼= Hom(G ◦QS , F ◦ LS ◦QS)
∼= Hom(G ◦QS , F ◦QT ◦ L)
∼= Hom(G ◦QS ◦R,F ◦QT )
∼= Hom(G ◦RT ◦QT , F ◦QT ) ∼= Hom(G ◦RT , F )

where two of these follow by the definition of localization (in particular, the fact that strict
localizations are also weak localizations), two follow by commutativity, and one follows by the
fact that L is left adjoint to R. This shows the desired isomorphism. ■

The above proposition essentially says that localization preserves adjoints. We now wish to
show that (finite) products of localizations are the same as localizations of finite products.

Proposition 3.44. Let C and D be categories, and let S (resp. T ) be a class of morphisms in
C (resp. D). Then there is a canonical isomorphism of categories

(C × D)S×T ∼= CS ×DT .

Proof. For any category E , we have natural isomorphisms (!) of categories

Fun(CS ×DT , E) ∼= Fun(CS ,Fun(DT , E))
∼= FunS(C,Fun(DT , E))
∼= FunS(C,FunT (D, E))
∼= FunS×T (C × D, E) ∼= Fun((C × D)S×T , E)

where we use that the product is left adjoint to Fun in the category Cat of categories. The
fourth isomorphism can be checked by explicitly writing out the adjunction map and checking
how it affects isomorphisms. We now apply the Yoneda lemma to deduce the result. ■

We will now show that localizations of additive categories are additive. The idea is that the
existence of finite products is equivalent to the existence of a left adjoint of the diagonal functor

C → Cn

for all finite n.

Lemma 3.45. Let C be a category, and let S be a right (resp. left) multiplicative system. Then
the localization functor Q : C → CS commutes with finite colimits (resp. limits).

34



3.4 The Verdier Quotient 3 Triangulated Categories

Proof. We assume S is a right multiplicative system, since the other case is dual. Let I be a
finite category, and let D : I → C be a diagram. Assume that lim−→i∈I D(i) exists. For any Y ∈ CS ,
we then have natural isomorphisms

HomCS (Q(lim−→
i

D(i)), Y ) = lim−→
(Y→Y ′)∈SY/

HomC(lim−→
i

D(i), Y ′)

∼= lim−→
(Y→Y ′)∈SY/

lim←−
i

HomC(D(i), Y ′)

∼= lim←−
i

lim−→
(Y→Y ′)∈SY/

HomC(D(i), Y ′)

= lim←−
i

HomCS (Q(D(i)), Y )

where the third row follows because finite limits commute with filtered colimits in Set. Therefore,
Q(lim−→i∈I D(i)) represents the desired colimit. ■

Proposition 3.46. Let C be an additive category, and let S be a multiplicative system. Then
CS is additive and the localization functor Q : C → CS is additive.

Proof. Since C admits finite products, there is a right adjoint P (n) to the diagonal functor
∆(n)

C : C → Cn for all n ≥ 0, given by taking the product of n objects. Similarly, since C admits
finite coproducts, there is a left adjoint S(n) to ∆(n)

C for all n ≥ 0, given by taking the coproduct
of n objects. Note that (∆(n)

C )S = ∆(n)
CS

, and therefore CS admits finite products and coproducts
by Proposition 3.43. Since Q commutes with finite limits and colimits by Lemma 3.45, it follows
that finite products and finite coproducts agree in CS . In particular, every object in CS is of the
form Q(X) for some X ∈ C, and we have canonical isomorphisms

Q(X) ⊔Q(Y ) ∼−→ Q(X ⊔ Y ) ∼−→ Q(X × Y ) ∼−→ Q(X)×Q(Y ).

Since Q preserves finite limits and colimits, it preserves finite products and coproducts.
Therefore, since in addition Q is essentially surjective, by Proposition 2.12, CS inherits an
additive structure such that Q is additive. ■

3.4 The Verdier Quotient
Suppose we have a triangulated category D. In the situation that a multiplicative system
S on D has no relation to the triangulated structure, there is no way of knowing whether
the localization DS has a reasonable triangulated structure on it which makes the localization
functor Q : D → DS a triangulated functor. Thus, for our purposes, we need a stronger notion.
The standard way to approach this is to designate a number of null objects, i.e. objects which
after localizing should be isomorphic to zero, in such a way that this information is compatible
with the distinguished triangles.

Definition 3.47. A full subcategory N of D is called a null system if

(N0) N is closed under isomorphism, i.e. if X ∈ D is isomorphic to Y ∈ N , then X ∈ N ,

(N1) 0 ∈ N ,

(N2) N is closed under shifting, i.e. X ∈ N if and only if X[1] ∈ N ,

(N3) N is closed under extensions, i.e. for any distinguished triangle X → Y → Z → X[1] in D
where X,Z ∈ N , then Y ∈ N .
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A (not necessarily full) subcategory satisfying only (N0) is called replete, and if said subcategory
is full, then one can say it is strictly full.

Remark 3.48. The terminology we use here differs from [KS06]. This is due to their terminology
generally clashing with many other standards. What we here call replete they call saturated,
but in some resources “saturated” may refer to either: a saturated class of morphisms (related
to homotopy theory), or a subcategory which is closed under direct summands.
Remark 3.49. Note that (N3) can actually be strengthened to the following statement: for any
distinguished triangle of the form

• •′ •′′ •[1]

if any two (non-shifted) objects are in N , then so is the third. In particular, just apply (TR2)
along with (N2) and (N3).

Proposition 3.50. Let D be a triangulated category, and let N be a full subcategory of D. Then
N is a null system if and only if N , together with the restriction of (−)[1] to N and with all
distinguished triangles whose objects are in N , is a strictly full triangulated subcategory of D.

Proof. Let N be a null system. Then N is an additive strictly full subcategory of D, since by
Corollary 3.23 we get that X ⊕ Y ∈ N for all X,Y ∈ N . Finally, that N is triangulated is im-
mediate: it satisfies (TR1)–(TR4) simply because any required distinguished triangle produced
in D using objects of N ends up in N .

Conversely, suppose N is a strictly full triangulated subcategory of D. Then (N0), (N1),
and (N2) are trivially satisfied. Suppose we have a distinguished triangle

X Y Z X[1]

in D with X,Z ∈ N . Then let Y ′ be a cone of Z[−1] → X in N , so that we have a morphism
of distinguished triangles

X Y ′ Z X[1]

X Y Z X[1]

by (TR2) and (TR3). Then the dashed arrow must be an isomorphism by Proposition 3.17, so
Y ∈ N . Therefore, N satisfies (N3), and hence is a null system. ■

We can codify Remark 3.49 as the following:

Corollary 3.51. Let D be a triangulated category, and let N be a null system. Then N satisfies
the following 2-out-of-3 property: for any distinguished triangle of the form

• •′ •′′ •[1]

if any two objects are in N , so is the third.

To any null system, we can associate a reasonable class of morphisms giving a multiplicative
system. The idea is as follows: in a triangulated category, we know that a morphism f : X → Y
is an isomorphism if and only if there exists a distinguished triangle
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X Y 0 X[1].f

Thus, if we want to make any Z ∈ N isomorphic to zero in such a way that we remain compatible
with the distinguished triangles, then we ought to invert all maps f : X → Y for which there
exists a distinguished triangle

X Y Z X[1].f

Therefore, we make the following definition:

Definition 3.52. Let D be a triangulated category, and let N be a null system in D. We then
define

S(N ) := {f : X → Y | there exists a d.t. X f−→ Y −→ Z −→ X[1] with Z ∈ N}.

Proposition 3.53. Let D and N be as above. Then S(N ) is a multiplicative system.

Proof. We check that N is a right multiplicative system, since the left case is dual. If i : X → Y
is an isomorphism in D, then we have a distinguished triangle

X Y 0 X[1]i

and since 0 ∈ N by (N1), we have that f ∈ S(N ) by definition. Thus, (M1) is satisfied. To
check (M2), consider two maps f : X → Y , g : Y → Z, in S(N ). Then (TR4) tells us that we
have a distinguished triangle

Cf Cg◦f Cg Cf [1]

where Cf , Cg◦f , and Cg are cones of f , g ◦ f , and g, respectively. Since f, g ∈ S(N ), we see that
Cf , Cg ∈ N , and therefore Cg◦f ∈ N , which finally means that g ◦ f ∈ S(N ).

We now prove (M3). Let f : X → Y be an arbitrary morphism in D, and let s : X → X ′ be
in S(N ). Note that by definition of S(N ), the cone of s is in N . Therefore, (N2) together with
(TR2) guarantees that there is some W ∈ N and a morphism h : W → X such that

W X X ′ W [1]h s

is a distinguished triangle. Let Y ′ be a cone of f ◦ h : W → Y . We then have a morphism of
distinguished triangles

W X X ′ W [1]

W Y Y ′ W [1]

h s

f g

f◦h t

where the dashed arrow g is obtained using (TR3). This identifies the morphism t as having a
cone in N , and therefore t ∈ S(N ).

Finally, we prove (M4). Here, since we are in an additive category, we may replace f by f−g
and g with the zero morphism, so that we need to prove the following: if we have a morphism
f : X → Y and a morphism s : W → X such that s ∈ S(N ) and f ◦ s = 0, then there exists a
Z ∈ D together with a map t : Y → Z such that t ∈ S(N ) and t ◦ f = 0. To produce Z and t,
we make use of (TR1) and the fact that distinguished triangles give weak kernel/cokernel pairs
by Proposition 3.20. In particular, a cone of s is a weak cokernel of s, and so we have a diagram
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W X Cs W [1]

Y

s g

f
h

To obtain Z and t, we complete the map h : Cs → Y to a distinguished triangle

Cs Y Z Cs[1]h t

using (TR1). Combining this with the diagram we already had, we get a commutative diagram

W X Cs W [1]

Y

Z

s g

f
h

t

where the dashed arrows give a distinguished triangle. Since s ∈ S(N ), we have that Cs ∈ N ,
and therefore t ∈ S(N ). Furthermore, by commutativity we get that

t ◦ f = t ◦ h ◦ g = 0 ◦ g = 0.

This completes the proof. ■

Definition 3.54. Let D be a triangulated category, and let N be a null system in D. Then we
denote the localization DS(N ) by D/N and call it the (Verdier) quotient of D by N .

Remark 3.55. This notation makes sense, since we are asking that in the quotient all objects of
N become isomorphic to 0.

We will now turn D/N into a triangulated category. First, let Q : D → D/N be the
localization functor. Then note that Q ◦ (−)[1] : D → D/N sends morphisms in S(N ) to
isomorphisms, so in particular it extends to a functor (−)[1] : D/N → D/N sitting in the
strictly commutative diagram

D D/N

D D/N .

Q

(−)[1] (−)[1]
Q

Prospectively, this will be the shift functor on D/N .

Theorem 3.56. Let D be a triangulated category, and let N be a null system in D. Then D/N
is an additive category. Furthermore, if we equip it with the functor described above and define
distinguished triangles to be those that are isomorphic to triangles of the form

Q(X) Q(Y ) Q(Z) Q(X[1])Q(u) Q(v) Q(w)

where X u→ Y
v→ Z

w→ X[1] is a distinguished triangle in D, then this gives D/N the structure
of a triangulated category such that the functor Q : D → D/N is triangulated.
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Proof. By Proposition 3.46, the category D/N is additive and Q is an additive functor. Given
the definitions above, if we can prove that D/N is triangulated, then Q is automatically a
triangulated functor (on account of the strict equality Q ◦ [1] = [1] ◦Q).

We begin by showing that the shift (−)[1] on D/N is an automorphism. For now, to separate
it from the shift on D, we will denote it by (−)[1]N . Note that because the diagram

D D/N

D/N

Q

Q id

commutes, the uniqueness in the definition of the localization implies that the identity on D/N
is the only functor which satisfies this. Now, let (−)[−1]N : D/N → D/N be defined by the
diagram

D D/N

D D/N

Q

(−)[−1]

Q

and note that
[−1]N ◦ [1]N ◦Q = [−1]N ◦Q ◦ [1] = Q ◦ [−1] ◦ [1] = Q

so that

D D/N

D/N

Q

Q
[−1]N ◦[1]N

commutes. By uniqueness, we then have [−1]N ◦ [1]N = id. An essentially identical computation
holds for [1]N ◦ [−1]N , so [1]N : D/N → D/N is an automorphism.

It now remains to check that D/N satisfies (TR1)–(TR4). Axiom (TR2) may be deduced
by changing all triangles to be of the form

Q(X) Q(Y ) Q(Z) Q(X[1])Q(u) Q(v) Q(w)

and then applying (TR2) to the triangles of the form

X Y Z X[1].u v w

in D. To check (TR1), consider a morphism Q(X) fs
−1
−→ Q(Y ), i.e. X s← X ′ f→ Y , in D/N . Then

we may take the cone of f in D to obtain a distinguished triangle X ′ f→ Y → Cf → X ′[1], and
we then see that we have an isomorphism of triangles

Q(X ′) Q(Y ) Q(Cf ) Q(X ′)[1]

Q(X) Q(Y ) Q(Cf ) Q(X)[1]

Q(f)

Q(s) ∼ ∼

fs−1
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where the top triangle is distinguished. Thus, the bottom triangle is also distinguished which
verifies (TR1).

To check (TR3), consider a diagram

X0 Y0 Z0 X0[1]

X1 Y1 Z1 X1[1]

and choose isomorphisms

Xi Yi Zi Xi[1]

Q(X ′
i) Q(Y ′

i ) Q(Z ′
i) Q(X ′

i[1]).

Then we have the diagram

Q(X ′
0) Q(Y ′

0) Q(Z ′
0) Q(X ′

0[1])

X0 Y0 Z0 X0[1]

Q(X ′
1) Q(Y ′

1) Q(Z ′
1) Q(X ′

1[1])

X1 Y1 Z1 X1[1]

where we get the solid vertical arrows in the background by using that the diagonal arrows are
isomorphisms, the dashed arrow in the background by applying (TR3) in D, and the dashed
arrow in the foreground by again using that the diagonal morphisms are isomorphisms. Axiom
(TR4) is proven similarly, i.e. by choosing isomorphic triangles that can be lifted directly to
triangles in D, applying (TR4), and then going back by applying Q(−). Thus, we conclude that
D/N with the given data is a triangulated category. ■

We may restate the universal property of localization with respect to this situation.

Theorem 3.57. Let D be a triangulated category, let N be a null system, and let Q : D → D/N
be the Verdier quotient. Then for all X ∈ N , we have Q(X) ∼= 0. Furthermore, if E is any other
triangulated category with a triangulated functor F : D → E such that F (X) ∼= 0 for all X ∈ N ,
there is a unique functor FN : D/N → E such that F = FN ◦Q.

Proof. For any X ∈ N , we have a distinguished triangle

0 −→ X −→ X −→ 0

in D, which shows that 0→ X is in S(N ). Therefore, 0 = Q(0) ∼= Q(X).
If F sends objects of N to zero, then it follows that for any morphism (s : X → Y ) ∈ S(N )

we have a distinguished triangle

F (X) F (Y ) 0 F (X)[1]F (s)

which implies that F (s) is an isomorphism in E . Therefore, F sends morphisms of S(N ) to
isomorphisms, which gives the claimed statement. ■
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Corollary 3.58. Let D be a triangulated category with a null system N , and consider a coho-
mological functor H : D → A to an Abelian category A such that H(X) = 0 for all X ∈ N .
Then the induced functor D/N → A is cohomological.

Proof. Since every distinguished triangle in D/N is (isomorphic to) the image of a distinguished
triangle in D, the result follows. ■

The notation for the Verdier quotient can suggest some things which are not quite true. Let
us introduce the following:

Definition 3.59. Let D and E be triangulated categories, and let F : D → E be a triangulated
functor. The kernel of F is the full subcategory of objects of D which are sent to zero by F , i.e.

kerF := {X ∈ D | F (X) ∼= 0}.

The kernel of F : D → E is automatically a strictly full triangulated subcategory of D, and
hence a null system. One might hope that when E = D/N that we get kerQ = N , but this
is not generally true. In particular, while N ⊆ kerQ, the kernel may be strictly larger. The
problem is this: we know that N is closed under extension (and hence under direct sums), but
we do not know that it is closed under taking summands. In particular, if Q(X ⊕ Y ) = 0, then
it follows that Q(X) = 0 and Q(Y ) = 0 since Q commutes with direct sums. We see that the
kernel is a thick subcategory.

Definition 3.60. A subcategory C of a triangulated category D is thick if it is a full triangulated
subcategory which is closed under direct summands.

Remark 3.61. In particular, a thick subcategory is closed under shifts, extensions, and direct
summands.

We then see that when N is not thick, the kernel must be larger than N . However, it will
turn out that the kernel is not much bigger. In particular, the final aim of this subsection is to
prove that kerQ = thick(N ), i.e. that the kernel of the localization map is the smallest thick
subcategory containing N . This fact will also allow us to characterize which morphisms in D
are sent to isomorphisms in D/N .

We proceed as in [Nee01]. Specifically, the argument contained in this thesis is exactly
Lemmas 2.1.31, 2.1.32, 2.1.33, and Proposition 2.1.35 in Neeman’s book except with slightly
different notation.

Lemma 3.62. Consider two morphisms f : X → Y , g : Y → Z in D. If any two of f , g, g ◦ f
are in S(N ), then the third is too.

Proof. If f and g are in S(N ), then trivially g ◦ f ∈ S(N ). In the other cases, we may apply
(TR4) to the composite g ◦ f to get a diagram

X Y Cf X[1]

X Z Cg◦f X[1]

Y Z Cg Y [1]

Cf Cg◦f Cg Cf [1]

f

g

g◦f

f

g
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where we then get the result using the 2-out-of-3 property (N3) of null systems (in particular,
see Remark 3.49). ■

Lemma 3.63. If a morphism
X

s←− X ′ f−→ X

in D/N is in the equivalence class of the identity (i.e. if fs−1 = idQ(X)), then f ∈ S(N ).

Proof. Definitionally, if fs−1 = idQ(X) then there exists a X ′′ ∈ D, a morphism

X
t←− X ′′ h−→ X,

and morphisms ϕ : X ′′ → X ′, ψ : X ′′ → X fitting into a commutative diagram

X ′

X X ′′ X

X

fs

ht

ψ

ϕ

id idX

By Lemma 3.62, ϕ and ψ are in S(N ). However, since ψ = f ◦ ϕ, by the same lemma we get
that f ∈ S(N ). ■

Lemma 3.64. A morphism
X

s←− X ′ g−→ Y

in D/N is invertible if and only if there are morphisms f and h such that g ◦ f, h ◦ g ∈ S(N ).

Proof. Suppose there exists morphisms f, h such that g ◦ f, h ◦ g ∈ S(N ). Then Q(g ◦ f) and
Q(h ◦ g) are invertible, and so we have both a left and right inverse for Q(g). In particular, we
have

Q(g) ◦Q(f) ◦Q(g ◦ f)−1 = id
and similarly for the left inverse. Therefore, Q(g) is invertible.

Conversely, suppose Q(g) is invertible. We must produce f and h such that g◦f, h◦g ∈ S(N ).
Since Q(g) is invertible, there exists an inverse Q(g)−1 = ft−1 : Q(Y )→ Q(X ′)

Y
t←− Y ′ f−→ X ′

and we may compose these to get that

Y
t←− Y ′ g◦f−→ Y

is in the equivalence class of the identity. Therefore, g ◦f ∈ S(N ). The procedure for producing
h is dual. ■

With these lemmas in place, we can prove that kerQ = thick(N ).

Proposition 3.65. Let D be a triangulated category, and let N be a null system. Then the
morphism X → 0 in D becomes an isomorphism in D/N if and only if there exists some Y ∈ D
such that X ⊕ Y ∈ N .

Proof. Suppose Q(X) → 0 is an isomorphism. By Lemma 3.64, we may choose some Y ∈ D
such that the composition
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X 0 Y [1]

is in S(N ). However, note that we have the distinguished triangle

X Y [1] (X ⊕ Y )[1] X[1]0

by Corollary 3.23 and therefore X ⊕ Y ∈ N by (N2).
Conversely, suppose we have some Y ∈ D such that X ⊕ Y ∈ N . We then again have the

distinguished triangle

X Y [1] (X ⊕ Y )[1] X[1]0

which shows that 0 : X → Y [1] is in S(N ). Furthermore, the composition 0 → X → 0 is an
isomorphism and hence also in S(N ). Then Lemma 3.64 says that X → 0 is an isomorphism. ■

Corollary 3.66. Let D be a triangulated category, let N be a null system, and let Q : D → D/N
be the Verdier quotient. Then kerQ = thick(N ). In particular, if N is furthermore a thick
subcategory, then kerQ = N .

Proof. The null system N is already a strictly full triangulated subcategory of D, so what
remains is to be closed under direct summands. By Proposition 3.65, the kernel kerQ is ex-
actly the smallest subcategory containing N which is closed under this operation, and therefore
kerQ = thick(N ). ■

Thus we see that as long as we are working with thick subcategories, the Verdier quotient
produces the kinds of results we expect from the notation (and our preconceptions from ordinary
abstract algebra). As another corollary to Proposition 3.65, we can give the following (admittedly
rather trivial) characterization of morphisms in D which are sent to isomorphisms in the Verdier
quotient D/N .

Corollary 3.67. Let D be a triangulated category, and let N be a null system. A morphism
f : X → Y in D is an isomorphism in D/N (i.e. Q(f) is an isomorphism) if and only if in
every triangle

X
f−→ Y −→ Z −→ X[1]

the object Z is a direct summand of an object in N .

Proof. If Q(f) is an isomorphism, then every cone is isomorphic to 0, and hence Q(Z) ∼= 0.
Therefore, Z is a direct summand of an object in N . Conversely, if Z is a direct summand of
an object in N then we have an isomorphism of triangles

Q(X) Q(Y ) Q(Z) Q(X)[1]

Q(X) Q(Y ) 0 Q(X)[1]

Q(f)

Q(f)

so that the bottom triangle is distinguished (since the triangle above is distinguished because Q
is triangulated), and hence Q(f) is an isomorphism. ■
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3.5 Recollement
Definition 3.68. A sequence

C D EP Q

of triangulated functors between triangulated categories C, D, and E is a Verdier quotient se-
quence if P is a fully faithful functor whose essential image is a strictly full thick subcategory of
D, and Q identifies E as the Verdier quotient D/P (C). We will say it is a weak Verdier quotient
sequence if the same conditions hold, except E is only the weak localization rather than strict
(see Remark 3.30).

Remark 3.69. The above is totally non-standard terminology, but there also does not appear to
be a standard.

Thus, any null system (i.e. strictly full triangulated subcategory) N of D gives rise to a
Verdier quotient sequence

N D D/N .

Indeed, all Verdier quotient sequences are essentially of this form. To make this precise, we
begin with the following definition:

Definition 3.70. A morphism of Verdier quotient sequences F : (C,D, E , P,Q)→ (C′,D′, E ′, P ′, Q′)
is a triple F = (F1, F2, F3) of functors fitting into a diagram

C D E

C′ D′ E ′

P

F1

Q

F2 F3

P ′ Q′

commutative up to natural isomorphism. We say such a morphism is an isomorphism if the Fi
are isomorphisms, and we say it is an equivalence if the Fi are equivalences.

Proposition 3.71. Consider a Verdier quotient sequence

C D E .P ′ Q′

Then there exists a null system N in D and an equivalence of Verdier quotient sequences

C D E

N D D/N

P ′

∼

Q′

∼

P Q

where the equivalence E ∼−→ D/N is an isomorphism and the above strictly commutes.

Proof. Let N be the essential image of P ′ : C ↪→ D. Then P ′ factors through the inclusion
P : N ↪→ D as P ′ = P ◦ F with F : C → N being the “codomain restricted” version of P ′. Since
P ′ is fully faithful, we know that F is an equivalence C ≃ N (in particular, it is trivially fully
faithful and essentially surjective). The isomorphism E ∼−→ D/N follows immediately from the
universal property of the (strict) localization. In particular, it depends only on the essential
image of P ′, i.e. on N . ■
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In some sense, we therefore see that by considering only Verdier quotient sequences

N ↪→ D ↠ D/N

we are essentially seeing all examples. This is in much the same way as any short exact sequence
of (not necessarily Abelian) groups

1 −→ H −→ G −→ K −→ 1

can be chosen as isomorphic to

1 −→ H ′ −→ G −→ G/H ′ −→ 1

and we interpret G as being a “sum” of H and K, though this need of course not be the
actual direct sum/product. The point of this interpretation is to say that in such a short exact
sequence, G is a combination of H and K. This interpretation also holds for Verdier quotient
sequences: in C ↪→ D ↠ E , we think of D as being an extension of E by C. In the world of
Abelian groups (or Abelian categories in general), when such a short exact sequence is split (left
or right, these being equivalent there), the middle term is the direct sum of the adjacent terms.
If one drops commutativity, the situation is more subtle: for a short exact sequence of arbitrary
groups, being left split or being a direct sum behaves the same as in the commutative case, but
being right split need not imply being left split nor a direct sum. Instead, the middle term turns
into a semidirect product instead.

In the world of triangulated categories and Verdier quotient sequences, the situation is a pe-
culiar mixture of the Abelian and arbitrary group cases, as we will see in the comming theorems.
In particular, while being left split is the same as being right split (see Theorem 3.87), there is a
further distinction between in what way the sequence splits since in this context “split” means
“admits an adjoint,” and a functor may admit both a left or a right adjoint. The nicest case is
where we split in both ways at the same time. This motivates the following definition:

Definition 3.72. A recollement is a Verdier quotient sequence together with a number of
adjoints

C D E

where each arrow is left adjoint to the one below it.

Here, there are a number of interesting statements to make. First, we put no requirements
on the adjoints as part of the assumptions, but it turns out that the ones on the left side
automatically become essentially surjective and the ones on the right side automatically become
fully faithful. Furthermore, one can say quite a lot about the images of the two adjoints on the
right. For this, we will first need to know about orthogonal complements.

Definition 3.73. Let D be an additive category (e.g. triangulated), and let C be a full subcat-
egory. Define the full subcategories

C⊥ := {Y ∈ D | ∀X ∈ C, HomD(X,Y ) = 0},
⊥C := {X ∈ D | ∀Y ∈ C, HomD(X,Y ) = 0}.

Proposition 3.74. Let D be a triangulated category, and let C be a triangulated subcategory of D.
Then C⊥ and ⊥C are strictly full thick subcategories of D. Furthermore, C ∩C⊥ ≃ C ∩⊥C ≃ {0}.
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Proof. That C⊥ and ⊥C are strictly full is obvious. That they are closed under direct summands
is also clear: suppose that X ⊕ Y ∈ C⊥, and let Z ∈ C. Then

0 = HomD(X ⊕ Y, Z) ∼= HomD(X,Z)⊕HomD(Y,Z) =⇒ HomD(X,Z) = HomD(Y,Z) = 0.

The computation for ⊥C is dual. Thus, it only remains to show that C⊥ and ⊥C are triangulated
subcategories of D. However, this itself is obvious since C is a triangulated subcategory of D.
In particular, if Z ∈ C then Z[i] ∈ C for all i ∈ Z, so if X ∈ C⊥ we have

0 = HomD(X,Z) ∼= HomD(X[i], Z[i])

so that X[i] ∈ C⊥. Thus C⊥ is closed under shifts, and we now just need it to be closed under
extensions. For this, it is enough to show that it is closed under taking cones. Suppose we have
a distinguished triangle

X ′ → X → Y → X ′[1]

with X,X ′ ∈ C⊥. Then, for any Z ∈ C, we have—by the fact that Hom is cohomological—the
exact sequence

0 = HomD(X ′[1])→ HomD(Y,Z)→ HomD(X,Z) = 0

which implies that Hom(Y,Z) = 0. Therefore, C⊥ is thick. The proof for ⊥C is identical but
dual.

The final statement follows since if X ∈ C and X ∈ C⊥, then for all Z ∈ C we have

HomD(X,Z) = 0 = HomD(0, Z) =⇒ X ∼= 0

by the Yoneda lemma. ■

We can now state the result we want.

Theorem 3.75. Suppose we have a recollement

C D E .P Q

LP

RP RQ

LQ

Then

(i) LP and RP are essentially surjective,

(ii) LQ and RQ are fully faithful,

(iii) RQ induces an equivalence E ≃ P (C)⊥ with quasi-inverse P (C)⊥ ↪→ D Q→ E, and

(iv) LQ induces an equivalence E ≃ ⊥P (C) with quasi inverse ⊥P (C) ↪→ D Q→ E.

We split the proof of this up into several intermediate lemmas.

Lemma 3.76. Let C and D be arbitrary categories, suppose we have a fully faithful functor
F : C ↪→ D, and suppose it has a left or right adjoint G : D → C. Then G is essentially
surjective.
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Proof. Suppose G is a left adjoint of F . Note that we have natural isomorphisms

HomC(X,−) ∼−→ HomD(F (X), F (−)) ∼−→ HomC(G(F (X)),−)

and therefore, by the Yoneda lemma, we have an isomorphism X ∼= G(F (X)). This means G is
essentially surjective: in particular, for every X ∈ C there is some Z ∈ D (namely, Z = F (X))
such that X ∼= G(Z). The proof when G is a right adjoint is similar. ■

Lemma 3.77. Suppose we have arbitrary categories D and E, and let F : D → E be a functor.

(a) A left adjoint L : E → D with unit η : idE → F ◦ L and counit ε : L ◦ F → idD is
fully faithful if and only if η is an isomorphism. In this case, the natural transformation
Fε : F ◦ L ◦ F → F is an isomorphism.

(b) Dually, a right adjoint R : E → D with unit η′ : idD → R ◦F and counit ε′ : F ◦R→ idE is
fully faithful if and only if ε′ is an isomorphism. In this case, the natural transformation
Fη′ : F → F ◦R ◦ F is an isomorphism.

Proof. We prove only (a) since (b) is totally dual. We have natural transformations

HomE(X,Y )→ HomD(L(X), L(Y )) ∼−→ HomE(X,F (L(Y ))).

These are (f : X → Y ) 7→ L(f) and (g : L(X) → L(Y )) 7→ F (g) ◦ ηX , where η : idE → F ◦ L is
the unit of the adjunction (L,F ). Composing the two, we clearly obtain the map

ϕX : HomE(X,Y )→ HomE(X,F (L(Y ))), f 7→ F (L(f)) ◦ ηX .

Since η is a natural transformation, this is the same as the map (ηY ◦) : HomE(X,Y ) →
HomE(X,F (L(Y ))). In particular, the diagram

X F (L(X))

Y F (L(Y ))

ηX

f F (L(f))
ηY

commutes. Furthermore, the maps ϕX assemble into a natural transformation ϕ : HomE(−, Y )→
HomE(−, F (L(Y ))). It is then clear that this is a natural isomorphism if and only if L is fully
faithful. Explicitly, if L is fully faithful then the first definition of ϕX in terms of L and ηX
is clearly an isomorphism for any X, and therefore ηY is an isomorphism. Conversely, if ηY
is an isomorphism then ϕ = (ηY ◦) is an isomorphism and hence the map HomE(X,Y ) →
HomD(L(X), L(Y )) must be an isomorphism.

Suppose now that L is fully faithful. By the triangle identities, we have the commutative
diagram

F F ◦ L ◦ F F
ηF

idF

Fε

and since η is a natural isomorphism, we see that ηF is also a natural isomorphism. Therefore,
we see that Fε is a natural isomorphism since it is squeezed between two other isomorphisms.
This completes the proof. ■

47



3.5 Recollement 3 Triangulated Categories

Lemma 3.78. [Kra22, Prop. 1.1.3] Suppose we have arbitrary categories D, E and an adjoint
functor pair L : D → E, R : E → D. Let SL be those morphisms in D sent to isomorphisms in
E by L, and let SR be those morphisms in E sent to isomorphisms in D by R. Then R is fully
faithful if and only if the induced functor LSL : DSL → E is an equivalence, and dually, L is fully
faithful if and only if the induced functor RSR : ESR → D is an equivalence.

Proof. Since the two assertions of the lemma are dual, we prove only one of them. In particular,
we show that R is fully faithful if and only if we have the given equivalence DSL ≃ E . To simplify
notation, let S = SL.

By Lemma 3.77, it suffices to show that the counit morphisms εX : L(R(X)) → X being
isomorphisms is equivalent to L inducing an equivalence DS

∼−→ E . Suppose the εX ’s are isomor-
phisms, and denote the unit of the adjunction by η : idD → R ◦ L. Then Q ◦ R is an inverse to
the induced functor LS : DS → E . To see this, first note that we have LS ◦Q ◦R ∼= L ◦R ∼= idE
since R is fully faithful. What remains is then the other composition. By Lemma 3.77, the
natural transformation Qη : Q→ Q ◦R ◦ L is a natural isomorphism. Thus we compute

Q ◦R ◦ LS ◦Q = Q ◦R ◦ L ∼= Q ∼= idDS ◦Q

which by the uniqueness in the universal property of the localization implies that Q ◦R ◦ LS ∼=
idDS .

Conversely, suppose that LS is an equivalence of categories. We aim to show that idE is left
adjoint to L ◦ R, since we will then have an isomorphism HomE(X,Y ) ∼= HomE(X,L(R(Y )))
which in particular gives that the counit maps εY : L(R(Y )) → Y are isomorphisms. Thus, we
show this adjointness claim.

Since LS is an equivalence, composition with L gives fully faithful functor

(◦L) : Fun(E , C)→ Fun(D, C)

for any category C since it is the same as the composition

Fun(E , C) Fun(DS , C) FunS(D, C) Fun(D, C).∼
(◦LS)

∼
(◦Q)

Taking C = E , we see that there is some η′ : idE → L ◦ R such that Lη = η′L. In particular,
we take the inverse image of Lη under the isomorphism Hom(idE , L ◦R) ∼−→ Hom(L,L ◦R ◦ L).
Prospectively, η′ is the unit of our desired adjunction (while ε will be the counit). By the triangle
identities for η, ε we have that

idL = εL ◦ Lη = εL ◦ η′L = (ε ◦ η′)L.

Therefore ε ◦ η′ = ididE . This gives one of the triangle identities. The other follows by applying
L to the other triangle identity for η, ε as follows:

idR = Rε ◦ ηR =⇒ idL◦R = (L ◦R)ε ◦ LηR = (L ◦R)ε ◦ η′(L ◦R).

This proves that idE is left adjoint to L ◦R, which finishes the proof. ■

Lemma 3.79. [MM92, p. 369, Lemma VII.4.1] Let D and E be arbitrary categories. Suppose we
have a functor F : D → E together with a left adjoint L : E → D and a right adjoint R : E → D.
Then L is fully faithful if and only if R is fully faithful.

Proof. Let η : idE → F ◦ L be the unit of the adjunction (L,F ), and let ε′ : F ◦R→ idE be the
counit of the adjunction (F,R). For all X,Y ∈ E , we then have a commutative diagram
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HomD(L(X), R(Y )) HomE(X,F (R(Y )))

HomE(F (L(X)), Y ) HomE(X,Y )

∼

∼ (ε′
Y ◦)

(◦ηX)

where, for clarity, we note that the isomorphisms are given explicitly by

HomD(L(X), R(Y )) ∼−→ HomE(X,F (R(Y ))), f 7→ F (f) ◦ ηX ,
HomD(L(X), R(Y )) ∼−→ HomE(F (L(X)), Y ), f 7→ ε′

Y ◦ F (f).

so the commutativity of the diagram is entirely trivial. This implies that all the ηX ’s are
isomorphisms if and only if all the ε′

Y ’s are isomorphisms. Therefore, η is an isomorphism if and
only if ε′ is an isomorphism, which by Lemma 3.77 implies that L is fully faithful if and only if
R is fully faithful. ■

With these lemmas in place, we can put together a proof of the theorem of interest.

Proof of Theorem 3.75. (i) is exactly Lemma 3.76.
(ii) RQ satisfies the conditions of Lemma 3.78, and is thus fully faithful. Thus, by Lemma

3.79 we automatically get that LQ is fully faithful.
(iii) We check that the essential image of RQ is P (C)⊥. Suppose we have some object of

P (C). It is then isomorphic to an object of the form P (X), where X ∈ C. Then, for any Y ∈ E ,
we have

HomD(P (X), RQ(Y )) ∼= HomE(Q(P (X)), Y ) ∼= HomE(0, Y ) = 0.

Therefore, RQ(E) ⊆ P (C)⊥. Conversely, let Y ∈ P (C)⊥. We have the unit map ηY : Y →
RQ(Q(Y )), and by Lemma 3.77 we know that Q(ηY ) is an isomorphism. Therefore, there is
some Z ∈ C and a distinguished triangle

Y RQ(Q(Y )) P (Z) Y [1]ηY

afterwhich we observe that both Y and RQ(Q(Y )) are in P (C)⊥ and therefore, since P (C) is a
full triangulated subcategory of D and hence P (C)⊥ is thick, we have P (Z) ∈ P (C) ∩ P (C)⊥.
Therefore, P (Z) = 0, so ηY is an isomorphism Y ∼= RQ(Q(Y )). Hence, RQ(E) = P (C)⊥.

(iv) The proof of this is entirely dual to (iii). In particular, the inclusion LQ(E) ⊆ ⊥P (C)
is obvious, and the other inclusion comes from observing that, by Lemma 3.77, the counit map
εX : LQ(Q(X))→ X becomes an isomorphism after applying Q. Thus, for X ∈ ⊥P (C), one gets
a distinguished triangle

LQ(Q(X)) X P (Z) LQ(Q(X))[1]

which implies P (Z) ∈ P (C) ∩ ⊥P (C) ≃ {0} so εX is an isomorphism. ■

Remark 3.80. As a result of the above, we see that all recollements are actually of the form

C D E .

Proposition 3.81. Consider a recollement
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C D E .P Q

LP

RP

Then kerLP = ⊥P (C) and kerRP = P (C)⊥.

Proof. We show one equality since the other is dual. Suppose that X ∈ D. Then

LP (X) = 0 ⇐⇒ ∀Y ′ ∈ C, HomC(LP (X), Y ′) = 0
⇐⇒ ∀Y ′ ∈ C, HomD(X,P (Y ′)) = 0
⇐⇒ X ∈ ⊥P (C).

This completes the proof. ■

Together with Lemma 3.78, we can use this proposition to say some interesting things. We
first introduce some terminology for convenience.

Definition 3.82. A Verdier quotient sequence

C D EP Q

is reflective if P and Q both admit a left adjoint, and it is coreflective if P and Q both admit a
right adjoint.

Remark 3.83. Note that a recollement is then a Verdier quotient sequence which is both reflective
and coreflective.
Remark 3.84. The terminology we use here is based on the terminologies (co)reflective subcate-
gory and (co)reflective localization. This is not a universal choice: for example, in [Kra22], what
we call a coreflective Verdier sequence he calls a localization sequence.

Proposition 3.85. Suppose we have a reflective Verdier quotient sequence

C D E .P Q

LP LQ

Then

E D C
LQ LP

Q P

is a coreflective weak Verdier quotient sequence. The dual statement also holds. That is, if we
have a coreflective Verdier quotient sequence, then this induces a reflective weak Verdier quotient
sequence.

Proof. This is essentially a consequence of Lemma 3.78. Certainly, the essential image of LQ
is a strictly full thick subcategory of D, so what remains is really only to check that C is
the appropriate Verdier quotient. Note that for a morphism f : X → Y in D, LP (f) is an
isomorphism if and only if

LP (X) −→ LP (Y ) −→ 0 −→ LP (X)[1]
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is a distinguished triangle, and this is true if and only if in every distinguished triangle

X
f−→ Y −→ Z −→ X[1]

we have Z ∈ kerLP = ⊥P (C) = LQ(E). Thus, since P is fully faithful we see that, by Lemma
3.78, we have a canonical equivalence D/LQ(E) ≃ C. ■

Remark 3.86. There is no version of Lemma 3.78 which replaces equivalence with isomorphism,
and so there is no way to prove a version of the above proposition where we drop the “weak”
part of the weak Verdier quotient sequences.

The above proposition in particular implies that from a recollement

C D EP Q

LP

RP RQ

LQ

we can extract (at least “weak”) coreflective and reflective Verdier localization sequences

E D C
LQ LP

Q P

and E D C.
RQ RP

Q P

More can be said about recollements. One item of interest is that there are superfluous
assumptions in the definition: if we are to trust our intuition that Verdier quotient sequences
C ↪→ D ↠ E are like short exact sequences of Abelian groups, then one should recognize that a
short exact sequence splits on the right precisely when it splits on the left. The analogue of this
statement turns out to also be true for Verdier quotient sequences.

Theorem 3.87. Suppose we have a Verdier quotient sequence

C D E .P Q

Then we have the following two collections of equivalent statements:

(i) The following are equivalent:

(a) P has a right adjoint RP ,
(b) Q has a right adjoint RQ, and
(c) for all X ∈ D there are X ′ ∈ P (C), X ′′ ∈ P (C)⊥ and a distinguished triangle

X ′ −→ X −→ X ′′ −→ X ′[1].

(ii) The following are equivalent:

(a) P has a left adjoint LP ,
(b) Q has a left adjoint LQ,
(c) for all X ∈ D there are X ′ ∈ ⊥P (C), X ′′ ∈ P (C) and a distinguished triangle

X ′ −→ X −→ X ′′ −→ X ′[1].
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In the case of (i), the equivalent conditions induce an equivalence D/P (C)⊥ ∼−→ C and an equal-
ity ⊥(P (C)⊥) = P (C). In the case of (ii), the equivalent conditions induce an equivalence
D/⊥P (C) ∼−→ C and an equality (⊥P (C))⊥ = P (C).

Proof. The idea is that the distinguished triangles tell us what the adjoints are. Furthermore,
(i) and (ii) are totally dual to each other, so it suffices to prove only one of them. We will prove
(ii).

Suppose we have (ii)(c). We will construct the functors LP and LQ. To construct LP , first
let X ′′ ∼= P (X ′′

0 ). Letting W ∼= P (W0) ∈ P (C), we have natural morphisms in exact rows

HomD(X ′[1],W ) HomD(X ′′,W ) HomD(X,W ) HomD(X ′,W )

0 HomC(X ′′
0 ,W0) HomD(X,W ) 0

∼
∼

so we have a natural isomorphism HomC(X ′′
0 ,−) ∼= HomD(X,P (−)). Therefore, the assignment

X 7→ X ′′
0 defines the desired left adjoint LP . In particular, a map X → Y composes to a

map X → Y ′′, which under the aforementioned natural isomorphism defines a unique map
LP (X) → LP (Y ). This proves that (ii)(c) implies (ii)(a). Constructing LQ is similar. In
particular, letting W ∈ ⊥P (C) this time, we see by applying Hom(W,−) that we have the exact
sequence

0 −→ Hom⊥P (C)(W,X
′) ∼−→ HomD(W,X) −→ 0

so that we have a natural isomorphism Hom⊥P (C)(−, X
′) ∼= HomD(−, X). Thus we have a right

adjoint R to the inclusion ι : ⊥P (C) ↪→ D. Observe that for all Z0 ∈ C, we have R(P (Z0)) = 0
since

Hom⊥P (C)(−, R(P (Z0))) ∼= HomD(ι(−), P (Z0)) = 0.

Therefore, the functor R factors through Q and we obtain a functor F : E → ⊥P (C) such that
F ◦ Q = R. In fact, this functor is an equivalence of categories by Lemma 3.78 since the left
adjoint of R, namely the inclusion ι, is fully faithful. The idea is now to show that ι ◦ F is left
adjoint to Q. To do this, note that we have natural isomorphisms

HomE(−, Q(−)) ∼= Hom⊥P (C)(F (−), (F ◦Q)(−))
∼= Hom⊥P (C)(F (−), R(−)) ∼= HomD((ι ◦ F )(−),−)

which finishes the proof of (ii)(c) =⇒ (ii)(b).
For the last bit, we need to show both that (ii)(a) implies (ii)(c) and that (ii)(b) implies

(ii)(c). The idea here is again quite simple, and the approach is to take the cone/cocone of the
appropriate unit/counit. Thus, assume (ii)(a). We can then consider the unit η : idD → P ◦LP ,
and in particular the component ηX : X → P (LP (X)) for any X. Taking the cocone, we obtain
a distinguished triangle

X ′ −→ X −→ P (LP (X)) −→ X ′[1].

Since P is fully faithful, we know by Lemma 3.77 that the natural transformation LP → LP ◦
P ◦ LP is a natural isomorphism, so by applying LP we have a distinguished triangle

LP (X ′) −→ LP (X) ∼−→ LP (X) −→ LP (X ′)[1]

which implies that LP (X ′) = 0. Therefore, for any Z ∈ C, we have

HomD(X ′, P (Z)) ∼= HomE(LP (X ′), Z) = HomE(0, Z) = 0.
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This completes the proof of (ii)(a) =⇒ (ii)(c).
Finally, assume (ii)(b). Then we have the counit ε′ : LQ ◦ Q → idD and in particular the

component ε′
X : LQ(Q(X))→ X. Taking the cone, we have a distinguished triangle

LQ(Q(X)) −→ X −→ X ′′ −→ LQ(Q(X))[1]

and we know by Lemma 3.77 that Q◦LQ◦Q→ Q is a natural isomorphism. Therefore, applying
Q gives the distinguished triangle

Q(X) ∼−→ Q(X) −→ Q(X ′′) −→ Q(X)[1]

so that Q(X ′′) = 0, hence Q(X) ∈ kerQ = P (C). This shows (ii)(b) =⇒ (ii)(c), and thus we
have completed all the equivalences.

That we have an equivalence D/⊥P (C) ∼−→ C is now an immediate consequence of Lemma
3.78. In particular, it is exactly Proposition 3.85.

We now show (⊥P (C))⊥ = P (C) when (ii) is fullfilled. The inclusion P (C) ⊆ (⊥P (C))⊥ is
obvious. Conversely, let Y ∈ (⊥P (C))⊥. Then, by the constructions in the proof that (ii)(c)
implies (ii)(a) and (ii)(b), we have a distinguished triangle

LQ(Q(Y )) −→ Y −→ P (LP (Y )) −→ LQ(Q(Y ))[1].

We then note that LQ(Q(Y )) ∈ LQ(E) = ⊥P (C), so in particular HomD(LQ(Q(Y )), Y ) = 0.
Thus, after shifting, we have a distinguished triangle

Y −→ P (LP (Y )) −→ LQ(Q(Y ))[1] 0−→ Y [1]

which exhibits P (LP (Y )) as the sum of Y and LQ(Q(Y ))[1] by Corollary 3.23. In particular,
Y is a direct summand of P (LP (Y )) which is in the thick subcategory P (C), hence Y ∈ P (C).
Therefore, P (C) = (⊥P (C))⊥. ■

Remark 3.88. For an alternative proof that (⊥P (C))⊥ = P (C) = ⊥(P (C)⊥), see the computations
in Example 5.49.

Corollary 3.89. Suppose we have a recollement

C D E .P Q

LP

RP RQ

LQ

Then, for all X ∈ D, there are distinguished triangles

LQ(Q(X)) X P (LP (X)) LQ(Q(X))[1]

P (RP (X)) X RQ(Q(X)) P (RP (X))[1]

ε′′
X ηX

ε′
X η′′′

X

where ηX is the unit of the adjunction (LP , P ), ε′′
X is the counit of the adjunction (LQ, Q), η′′

X

is the unit of the adjunction (Q,RQ), and ε′
X is the counit of the adjunction (P,RP ).

Proof. This is simply by the constructions of the relevant adjoints in the proof that (ii)(c) =⇒
(ii)(a) and (ii)(b) in Theorem 3.87. In particular, this gives the first distinguished triangle. The
second one is just a result of the dual argument. ■
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3.6 Notes on Enhancements
As pointed out in Sections 3.1 and 3.2, triangulated categories have the problem that the
operation of taking cones is not in general functorial, in particular as a consequence of the
non-canonicity of the morphism in (TR3). This is a fundamental, unavoidable problem with
triangulated categories. To see this, consider any triangulated category D and an object X ∈ D.
We then have the distinguished triangle

X −→ X −→ 0 −→ X[1]

which we can use to produce an explicit example of non-canonicity in (TR3). In particular, we
note that by shifting it appropriately in two different ways, we get the two following morphisms
of distinguished triangles:

X 0 X[1] X[1]

0 X[1] X[1] 0

id

id 0

id

As a result, it is necessarily impossible for there to be a unique choice of filling in (TR3),
and we can conclude that taking cones cannot be a “universal construction” in the context of
triangulated categories.

The above technical difficulty is also inherent in the natural examples we come across:
while the cone construction yields a functor Mor(C(A)) → C(A), it fails to yield a functor
Mor(K(A)) → K(A). The reason for this is simple: suppose we have morphisms f : X• → Y •

and g : Z• → W • of chain complexes, and we have a morphism (u, v) : f → g in Mor(K(A)), it
is not too hard to check that the equations induced by having a functorial cone forces this to
lift to a morphism in Mor(C(A)). In particular, if the cone operation in K(A) was functorial,
then we would have v ◦ f = g ◦ u strictly, i.e. not up to homotopy. This is a useful point to keep
in mind, because it indicates that what we actually want as a kind of universal property would
be that if we supply the homotopy v ◦ f ⇒ g ◦ u, then we should have a uniquely determined
induced map on the cones of f and g.

The fact that cones do not behave as well as one might want is one of the central technical
difficulties with triangulated categories. Indeed, the cone fails to be given by a universal property
due in large part to the failure of triangulated categories (e.g. K(A)) to explicitly remember
homotopy data. Rectifying this requires some form of modification to actual category theory
which lets one escape strict non-canonicity and remember some (coherent) homotopy data.
Specifically, one needs something like (∞, 1)-categories.

Various attempts at such structures have been made, including such things as Grothendieck’s
derivators (possibly the best one can do in a 1-categorical world), but the approach which is
most popular at present uses simplicial models for (∞, 1)-categories, namely quasicategories for
which [Lur09] is a standard encyclopedic reference. Henceforth, when we say “∞-category,” we
mean in the sense of Lurie. Using an ∞-categorical framework, one can note that cones are
canonical up to some level of (coherent) homotopy (giving them a genuine universal property),
and thus∞-categories (settings for doing homotopy coherent mathematics) can be of use in this
situation.

With ∞-categories at hand, one can define stable ∞-categories, essentially ∞-categorical
(or homotopy) versions of Abelian categories, where we recall that triangulated categories are
supposed to be a kind of homotopy version of Abelian categories also. Any ∞-category has an
associated 1-category called the homotopy category, and stable ∞-categories have the property
that their homotopy category automatically has a canonical triangulated structure; in other
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words, stable∞-categories are an∞-categorical “refinement” or “enhancement” of triangulated
categories. A discussion of this can be found in [Lur17]. An appealing aesthetic feature here
is that stable ∞-categories are defined by properties rather than by having a certain structure
endowed on them.

Stable ∞-categories also enjoy a number of other nice properties that triangulated cate-
gories do not. For example, applying some reasonable categorical construction to a triangulated
category does not usually yield a triangulated category. However, in the world of stable ∞-
categories, this is no longer the case and one can, for example, take limits or (filtered) colimits
of them to obtain new stable ∞-categories.

One way in which this improved behavior of stable ∞-categories exhibits itself is in the
theory of recollements. In the world of triangulated categories, when recollements do exist, they
behave reasonably well. However, they do not always exist. Specifically, suppose we have two
triangulated categories C and E , and a triangulated functor F : E → C along which we wish to
“glue” C and E . Sometimes we get lucky and this exists (in which case the gluing functor F is
given by RP ◦ LQ, in the notation of Section 3.5), but in general this is simply not the case.
The construction one would like to go through with does not work. On the other hand, if we
replace C and E with stable∞-categories, and F with an exact functor of such, then it is always
possible to construct a recollement (with F as the gluing functor). For a resource on this topic,
see [Lur17, Appendix A.8], and in particular Remark A.8.12 there. For a perhaps less imposing
resource, see [DJW19, §1] or [Sha22, §2].
Remark 3.90. While stable∞-categories are an analogue of Abelian categories in the context of
∞-categories, it should be noted that they are not an “enlargement” of the category of Abelian
categories. In particular, given an Abelian category A, one may reasonably ask if (the nerve
of) A is a stable ∞-category, and this is never the case unless A is (equivalent to) the zero
category. Heuristically, the reason for this is pretty simple: the fact that stable ∞-categories
come equipped with a canonical suspension (i.e. shift) operation given by pushing out along two
zero maps implies that for any X ∈ A, we would necessarily have an ∞-Cartesian square

X 0

0 X[1]

but since this would have to be a Cartesian square in A as a 1-category, this would imply that
X = 0, and so A ≃ {0}.
Remark 3.91. On the other hand, there are non-trivial triangulated categories which are also
Abelian categories.
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4 Derived Categories

Derived categories form natural categories within which to formulate (co)homological theorems.
Essentially, the idea is to recognize that, for the purposes of homological algebra, we may always
replace a chain complex by a chain complex which has identical (co)homological properties.
Thus, it makes sense to consider a category which only cares about chain complexes “up to
cohomology.” This is exactly the derived category.

Mostly, this section derives from the exposition of derived categories in [KS06].

4.1 Chain Homotopies & Quasi-Isomorphisms
Let A be an Abelian category. Recall that at the end of Section 2, we defined the cohomology
functor Hi : C(A)→ A. In particular, we saw that a morphism f : A• → B• induces morphisms
Hi(f) : Hi(A•) → Hi(B•) for each i ∈ Z. This assignment is not injective: it can occur that
the induced morphisms on cohomology agree without the original morphisms being the same.
A way to produce examples of this is to consider chain homotopies.

Definition 4.1. Let f, g : A• → B• be morphisms of chain complexes in A. A chain homotopy
η : f ⇒ g is a collection of morphisms ηi : Ai → Bi−1, i ∈ Z, such that

f i − gi = ηi+1 ◦ diA + di−1
B ◦ ηi.

Pictorially, we have the (non-commutative) diagram

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

di−1
A diA

f igi
ηi

ηi+1

di−1
B

diB

We define a relation ∼h on HomC(A)(A•, B•) by f ∼h g if there exists a chain homotopy f ⇒ g.
We say f is nullhomotopic if f ∼h 0.

Proposition 4.2. The relation ∼h on HomC(A)(A•, B•) is an equivalence relation. Further-
more, it is compatible with the addition of morphisms in the sense that if f ∼h h and g ∼h k,
then (f + g) ∼h (h + k), and additionally it is compatible with composition in the sense that if
we have maps

C ′• A• B• C•h
f

g

k

such that f ∼h g, then f ◦h ∼ g◦h and k◦f ∼ k◦g. In other words, the system of nullhomotopic
morphisms forms a two-sided ideal in C(A). In particular, {f : A• → B• | f ∼h 0} forms a
subgroup of the morphisms A• → B•.

Proof. Clearly, f ∼h f using the zero maps. If f ∼h g via a chain homotopy η : f ⇒ g, then
taking the maps −ηi gives a chain homotopy −η : g ⇒ f . In particular,

gi − f i = −(f i − gi) = −(ηi+1 ◦ diA + di−1
B ◦ ηi) = (−ηi+1) ◦ diA + di−1

B ◦ (−ηi).
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Finally, if we have chain homotopies η : f ⇒ g and σ : g ⇒ h, then η − σ is a chain homotopy
f ⇒ h. In particular,

f i − hi = (f i − gi)− (hi − gi) = ηi+1 ◦ di + di−1 ◦ ηi − σi+1 ◦ di − di−1 ◦ σi

= (ηi+1 − σi+1) ◦ di + di−1 ◦ (ηi − σi).

Therefore, f ∼h g and g ∼h h =⇒ f ∼h h, so ∼h is an equivalence relation.
Suppose that f ∼h h and g ∼h k. It is then clear that (f+g) ∼h (h+k) since f+g−h−k =

(f − h) + (g − k). Similarly, since h ◦ f − h ◦ g = h ◦ (f − g) we have

hi ◦ (f i − gi) = (hi ◦ ηi+1) ◦ di + hi ◦ di−1 ◦ ηi = (hi ◦ ηi+1) ◦ di + di−1 ◦ (hi−1 ◦ ηi)

so we obtain a chain homotopy h ◦ f ⇒ h ◦ g. The other case is identical. ■

Corollary 4.3. The following data assembles into a category K(A), called the homotopy cate-
gory of chain complexes in A: objects are simply objects of C(A). The morphisms are defined
by HomK(A)(A•, B•) := HomC(A)(A•, B•)/ ∼h.

The remarkable thing about this particular equivalence relation is that it is compatible with
cohomology. One should expect this from the terminology chosen: in topology, two homotopic
continuous maps induce the same map on cohomology. In the context of homological algebra,
we have the

Proposition 4.4. Let f, g : A• → B• be morphisms of chain complexes, and suppose that
f ∼h g. Then Hi(f) = Hi(g) for all i ∈ Z. In particular, let U : C(A) → K(A) be the obvious
functor. Then Hi : C(A) → A lifts to a functor K(A) → A, also denoted by Hi, such that
Hi ◦ U = Hi.

Proof. Let f : A• → B• be a morphism of chain complexes. It suffices to show that if f ∼h 0,
then Hi(f) = 0 for all i ∈ Z. We have a chain homotopy η : f ⇒ 0, i.e. a collection of maps
ηi : Ai → Bi−1 in the (non-commutative) diagram

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

di−1

f i−1

di

f i
ηi

ηi+1
f i+1

di−1 di

such that f i = ηi+1 ◦ di + di−1 ◦ ηi. Recall the diagram

Ai−1 im di−1
A ker diA Hi(A•)

Ai

Bi−1 im di−1
B ker diB Hi(B•)

Bi

f i−1

di−1
A

Hi(f)

f i

di−1
B
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To show that Hi(f) = 0, it suffices to show that the composition ker diA → ker diB ↠ Hi(B•) is
zero. Specifically, showing this implies that one may choose Hi(f) = 0 to make the right-most
square commute, and then uniqueness gives the result.

Observe that, since the composition ker di ↪→ Ai
diA→ Ai+1 is zero by definition, the composi-

tion of this with ηi+1 is zero. In particular, the composition

ker di Ai Biηi+1◦di

is zero. Furthermore, the map di−1
B ◦ ηi factorizes through im di−1

B as

Ai Bi−1 Bi

im di−1
B

ηi di−1
B

and therefore the composition of the morphisms ker diA → ker diB ↠ Hi(B•) is equal to

ker diA Ai Bi−1 im di−1
B ker diB Hi(B•)ηi

which is zero by definition. Therefore Hi(f) = 0, as desired. ■

Thus, as far as cohomology is concerned, the category K(A) of chain complexes up to
homotopy is just as good as the category C(A). We will now give a first “naive” definition of
the derived category.

Definition 4.5. Let f : A• → B• be a morphism of chain complexes in an Abelian category A.
We say f is a quasi-isomorphism if Hi(f) is an isomorphism for every i ∈ Z. We then say that
A• and B• are quasi-isomorphic.

The derived category should be a category which only cares about complexes “up to co-
homology.” Thus, it makes sense to define the derived category of A as the category of chain
complexes C(A) localized at the quasi-isomorphisms. However, as observed in the earlier dis-
cussion of localization, this gives us relatively little control over the behavior of the localization,
and in fact we seem to lose knowledge of what properties of A (and C(A)) transfer over to the
derived category. Therefore, we would like to impose additional structure that allows us to bet-
ter track these kinds of things. In particular, we want the derived category to be a triangulated
category.

To obtain the triangulated structure, we cannot proceed using C(A). Instead, we impose a
triangulated structure upon the homotopy category of chain complexes K(A), after which we
take a Verdier quotient by those chain complexes quasi-isomorphic to zero (which turns out to
be the same as localizing at quasi-isomorphisms). Note that the notion of a quasi-isomorphism
is independent of homotopy by Proposition 4.4.

4.2 The Triangulated Structure on K(A)
The first step in giving K(A) a triangulated structure is to satisfy (TR1), i.e. we need to produce
a cone Cf for any morphism f : X• → Y • of chain complexes. We do this following [KS06],
though in that book the authors perform the construction more generally for an additive category
with translation (of which C(A) and K(A) are examples).
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Definition 4.6. Let A be an Abelian category, and let X• ∈ C(A) be a chain complex. Define
X[1]• to be the complex given by X[1]i = Xi+1 and diX[1] = −di+1

X . This data forms an additive
automorphism (−)[1] : C(C) → C(A) which sends a morphism f : X• → Y • to the morphism
f [1] defined by f [1]i = f i+1. We write (−)[i] for (−)[1] applied i times.
Remark 4.7. Note that dX[1] = −dX [1], and that we previously defined a shift functor (−)(1)
which, on morphisms, also acts by f(1)i = f i+1. ThusX[1]• is the chain complex (X(1)•,−dX(1)).
Furthermore, note that dX defines a morphism of chain complexes X• → X[1]•.
Definition 4.8. Let f : X• → Y • be a morphism of chain complexes in A. The mapping cone
of f is the complex C•

f defined by Cif := Xi+1 ⊕ Y i, i.e. C•
f = X(1)• ⊕ Y •, and with differential

given by the matrix

dCf :=
(
dX[1] 0
f [1] dY

)
=
(
−dX [1] 0
f [1] dY

)
.

Remark 4.9. Hence, the differential on Cf is defined, by universal property, by the maps dX[1]
and 0 defining a map X(1)⊕Y → X(2), the maps f [1] and dY defining a map X(1)⊕Y → Y (1),
and thus this data combining together to a map X(1) ⊕ Y → X(2) ⊕ Y (1). For clarity, it fits
into a diagram

X(1)• X(2)•

C•
f X(1)• ⊕ Y • X(2)• ⊕ Y (1)• Cf (1)•

Y • Y (1)•

dX[1]

f [1]

0

dY

where the dashed arrow is then the differential C•
f → Cf (1)•.

Proposition 4.10. Consider the category Mor(C(A)) of morphisms in C(A). Then the oper-
ation f 7→ C•

f defines a functor Mor(C(A)) → C(A), which is defined on morphisms (f, g) :
(X• → Y •)→ (X ′• → Y ′•) in Mor(C(A)) by

X• X ′•

Y • Y ′•

u

f

v

g

7→ f [1]⊕ g : C•
u → C•

v

Proof. As long as f [1] ⊕ g actually defines a morphism of chain complexes as desired, this will
automatically define a functor. Thus, we need only check that f [1]⊕ g is a morphism C•

u → C•
v .

This is a computation:

diCv ◦ (f i+1 ⊕ gi) =
(
−di+1

X′ 0
vi+1 diY ′

)(
f i+1 0

0 gi

)

=
(
−di+1

X′ ◦ f i+1 0
vi+1 ◦ f i+1 diY ′ ◦ gi

)

=
(
−f i+2 ◦ diX 0
gi+1 ◦ vi+1 gi+1 ◦ diY ′

)

=
(
f i+2 0

0 gi+1

)(
−di+1

X 0
ui+1 diY

)
= (f i+2 ⊕ gi+1) ◦ diCu

as desired. ■
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Proposition 4.11. Let f : X• → Y • be a morphism of chain complexes in A. Then C•
f is a

chain complex which fits into a triangle

X• Y • C•
f X[1]•f αf βf

where αf is defined by the maps 0 : Y • → X[1]• and idY and βf is defined by the maps idX[1]
and 0: Y • → X[1]•.

Proof. To see that dCf [1] ◦ dCf = 0, just note that(
−dX [2] 0
f [2] dY [1]

)
◦
(
dX[1] 0
f [1] dY

)
=
(

dX [2] ◦ dX [1] 0
f [2] ◦ dX[1] + dY [1] ◦ f [1] dY [1] ◦ dY

)

=
(

0 0
f [2] ◦ dX[1] + dY [1] ◦ f [1] 0

)
.

One then notes that, since f is a morphism of chain complexes, we have

f [2] ◦ dX[1] + dY [1] ◦ f [1] = (−f [1] ◦ dX + dY ◦ f)[1] = 0

and therefore (C•
f , dCf ) is a chain complex. ■

Remark 4.12. This proposition shows us an obvious obstruction to making C(A) a triangulated
category (or at least in such a way that the above triangles become distinguished). In particular,
Lemma 3.14 says that the composition αf ◦ f should be zero. This is trivially not true! Indeed,
we can write αf in coordinates as the map (0, idY ), and αf ◦ f as (0, f) which is clearly non-
zero when f is non-zero. Thus, the given triangle cannot be distinguished in any triangulated
structure on C(A).

Lemma 4.13. Let A be an Abelian category. Then the shift functor (−)[1] preserves homotopy
equivalence. In particular, if f, g : X• → Y • are morphisms of chain complexes such that f ∼h g,
then f [1] ∼h g[1]. Thus, (−)[1] induces an automorphism K(A) ∼−→ K(A).

Proof. It suffices to assume g = 0, so that f ∼h 0. Thus we have a homotopy η : f ⇒ 0, i.e. an
equation

f i = di−1
Y ◦ ηi + ηi+1 ◦ diX .

Incrementing i by one, we get

f i+1 = diY ◦ ηi+1 + ηi+2 ◦ di+1
X

so that
f [1]i = di−1

Y [1] ◦ (−ηi+1) + (−ηi+1) ◦ diX[1]

providing the desired homotopy. ■

Theorem 4.14. Let A be an Abelian category. Then K(A) is a triangulated category when
endowed with the shift functor (−)[1] : K(A) → K(A) and the class of distinguished triangles
given by all triangles isomorphic to those of the form

X• Y • C•
f X[1]•.f
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Proof. The second half of (TR1) is obvious by definition of the distinguished triangles. The first
half (i.e. that X• → X• → 0→ X[1]• is distinguished) will follow from (TR2) and the fact that
the mapping cone of the zero map 0→ X• is X• itself, and fits in the triangle

0 X• X• 0[1] = 0.id

Thus, it remains to prove (TR2), (TR3) and (TR4). Consider a distinguished triangle

X• Y • Z• X[1]•u v w

and note that we may assume that Z• = C•
f , u = f , v = αf , and w = βf since the above triangle

is necessarily isomorphic to that. We construct a map ϕ : X[1]• → C•
αf

which is an isomorphism
in K(A) and for which the diagram

Y • C•
f X[1]• Y [1]•

Y • C•
f C•

αf
Y [1]•

αf βf −f [1]

ϕ

αf ααf βαf

(3)

commutes. We will first summarize the items at play. Note that, forgetting the differential
structure,

C•
f = X[1]• ⊕ Y •, C•

αf
= Y [1]• ⊕X[1]• ⊕ Y •.

These have differentials

dCf =
(
dX[1] 0
f [1] dY

)
, dCαf =

 dY [1] 0 0
0 dX[1] 0

idY [1] f [1] dY

 =

−dY [1] 0 0
0 −dX [1] 0

idY [1] f [1] dY

 .
On coordinates, we have

αf =
(

0
idY

)
, ααf =

 0 0
idX[1] 0

0 idY

 ,
βf =

(
idX[1] 0

)
, βαf =

(
idY [1] 0 0

)
.

We now define ϕ and its homotopy inverse ψ. Let ϕ be the map given on coordinates by
(−f [1], idX[1], 0), and let ψ : C•

αf
→ X[1]• be given by the matrix

(
0 idX[1] 0

)
. These are

compatible with the differentials, and so define actual morphisms of chain complexes.
Next, observe that trivially ψ ◦ ϕ = idX[1]. We expect this to be the homotopy inverse of ϕ,

so we want ϕ ◦ ψ ∼h id. One then computes that ϕ ◦ ψ is given by the matrix

ϕ ◦ ψ =

−f [1]
idX[1]

0

 ◦ (0 idX[1] 0
)

=

0 −f [1] 0
0 idX[1] 0
0 0 0

 .
We define a homotopy id⇒ ψ ◦ ψ by the matrix

η =

0 0 idY
0 0 0
0 0 0

 .
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This is indeed a homotopy of the given type: observe that

ηi+1 ◦ diCαf + di−1
Cαf
◦ ηi

=

0 0 idY i+1

0 0 0
0 0 0

 ◦
−d

i+1
Y 0 0
0 −di+1

X 0
idY i+1 f i+1 diY

+

−diY 0 0
0 −diX 0

idY i f i di−1
Y

 ◦
0 0 idY i

0 0 0
0 0 0


=

idY i+1 f i+1 0
0 0 0
0 0 idY i

 = idCαf − ϕ
i ◦ ψi.

This proves that ψ is a homotopy inverse to ϕ. That the right-most square in (3) commutes (in
C(A)) is easily verified by a matrix computation. The middle square only commutes in K(A),
which one verifies by checking that ψ ◦ ααf = βf ; again, this is an easy matrix computation.
This proves that the given morphism of triangles is an isomorphism in K(A), so the triangle

Y • C•
f X[1]• Y [1]•

αf βf −f

is distinguished, which proves (TR2). Observe that by previous remarks, this also proves the
full (TR1).

To prove (TR3), consider first the diagram

X• Y • C•
f X[1]•

Z• W • C•
g Z[1]•

f

u

αf

v

βf

u[1]

g αg βg

which we are to fill. This commutes only in K(A), so we are given some homotopy

σ : v ◦ f ⇒ g ◦ u.

We then build a morphism

w : C•
f → C•

g , w :=
(
u[1] 0
σ[1] v

)
, i.e. wi =

(
ui+1 0
σi+1 vi

)
.

This is compatible with the differentials. In particular,

di−1 ◦ wi−1 =
(
−diZ 0
gi di−1

W

)
◦
(
ui 0
σi vi−1

)
=
(

−diZ ◦ ui 0
gi ◦ ui + di−1

W ◦ σi di−1
W ◦ vi−1

)

=
(

−ui+1 ◦ diX 0
vi ◦ f i − σi+1 ◦ diX vi ◦ di−1

Y

)

=
(
ui+1 0
σi+1 vi

)
◦
(
−diX 0
f i di−1

Y

)
= wi ◦ di−1.

Therefore, w defines an actual morphism of chain complexes. We then have w ◦αf = αg ◦ v and
u[1] ◦ βf = βg ◦ w by easy matrix computations. This proves (TR3).

Finally, we prove (TR4). Suppose we have morphisms X• f−→ Y • g−→ Y ′•. We wish to fill
in the dashed arrows in the diagram
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X• Y • C•
f X[1]•

X• Y ′• C•
g◦f X[1]•

Y • Y ′• C•
g Y [1]•

C•
f C•

g◦f C•
g Cf [1]•

f αf

g

βf

g◦f

f

αg◦f βg◦f

f [1]

g

αf

αg

αg◦f

βg

αf [1]

which we note commutes in C(A) (if we ignore the dashed arrows). The fact that this commutes
in C(A), and not just in K(A), means that in the construction from (TR3) we may choose the
trivial homotopy for each of the squares on the left to obtain maps

C•
f C•

g◦f C•
g Cf [1]•.

(
id 0
0 g

)
u v

(
f [1] 0

0 id

) (
0 0
id 0

)
w

It is clear that these choices make the diagram above commute. Thus, what remains is to show
that it is distinguished. We do this using the same method we used to prove (TR2). Thus
consider the mapping cone of u and note that, forgetting the differential, we have

Cu = X[2]• ⊕ Y [1]• ⊕X[1]• ⊕ Y ′•.

We define the maps ϕ : C•
u → C•

g and ψ : C•
g → C•

u by the matrices

ϕ =
(

0 idY [1] f [1] 0
0 0 0 idY ′

)
ψ =


0 0

idY [1] 0
0 0
0 idY ′

 .
It can be checked that these are compatible with the differentials. Clearly, we then have ϕ◦ψ =
idCg . We have a homotopy σ : 1⇒ ψ ◦ ϕ given by the matrix

σ =


0 0 idX[1] 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
One may explicitly check that this is a homotopy of the given type just as was done in the proof
of (TR2). We will omit this since it is uninteresting (particularly in light of the fact that we
have already done a similar computation). In any case, we see that ψ is an inverse of ϕ in K(A).
It is easily observed that the diagram

C•
f C•

g◦f C•
u Cf [1]•

C•
f C•

g◦f C•
g Cf [1]•

u αu βu

ϕ

u v w

ψ
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commutes in K(A) (in particular, ϕ ◦ αu = v and βu ◦ ψ = w) giving that the lower triangle
is distinguished. This proves (TR4), and so we have completed the proof that K(A) is a
triangulated category when endowed with the given structure. ■

Proposition 4.15. [KS06, Thm. 12.2.4 & Cor. 12.2.5] Let A be an Abelian category, and con-
sider an exact sequence

0→ X• → Y • → Z• → 0

in A. Then, for all i ∈ Z,

(i) the induced sequence
Hi(X•)→ Hi(Y •)→ Hi(Z•)

is exact,

(ii) there exists a δi : Hi(Z•)→ Hi+1(X•), functorial in the exact sequence, such that

Hi(Y •)→ Hi(Z•) δi→ Hi+1(X•)→ Hi+1(Y •)

is exact, and

(iii) the functor Hi : K(A)→ A is cohomological.

Proof. For (i) and (ii), first note that for all i ∈ Z we have the commutative diagram (with exact
rows)

coker di−1
X coker di−1

Y coker di−1
Z 0

0 ker di+1
X ker di+1

Y ker di+1
Z

u v w (4)

as a result of the following very large commutative diagram:

0 0 0 0 0

Xi−1 Xi Xi+1 Xi+2

coker di−1
X ker di+1

X

Y i−1 Y i Y i+1 Y i+2

coker di−1
Y ker di+1

Y

Zi−1 Zi Zi+1 Zi+2

coker di−1
Z ker di+1

Z

0 0 0 0 0

which is obtained by repeatedly using universal properties. One observes that there are natural
isomorphisms

Hi(X•) ∼= ker(coker di−1
X → Xi+1) ∼= ker(coker di−1

X → ker di+1
X )

Hi+1(X•) ∼= coker(Xi → ker di) ∼= coker(coker di−1
X → ker diX)
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since the map ker di+1
X ↪→ Xi+1 is a monomorphism and the map Xi ↠ coker di−1

X is an epimor-
phism. Applying the snake lemma (see, for example, [KS06, p. 297, Lemma 12.1.1]) to (4) then
gives us the long exact sequence

keru ker v kerw cokeru coker v cokerw

Hi(X•) Hi(Y •) Hi(Z•) Hi+1(X•) Hi+1(Y •) Hi+1(Z•)

∼ ∼ ∼ ∼ ∼ ∼

δi

which proves (i) and (ii).
We now prove (iii). Suppose we have a distinguished triangle

X• Y • Z• X[1]•f g h

in K(A). Shifting this to the left, we still have a distinguished triangle which hence has an
isomorphism with a mapping cone triangle of some morphism u : U• → V •, and shifting to the
right again provides us with the isomorphism

X• Y • Z• X[1]•

V • C•
u U [1]• V [1]•

f

∼

g

∼

h
∼ ∼

αu βu −u[1]

afterwhich we notice that

0 V • C•
u U [1]• 0αu βu

is exact. Applying (i) to this together with the given isomorphism of triangles yields the exact
sequence

Hi(X•)→ Hi(Y •)→ Hi(Z•)

as desired. ■

Remark 4.16. See Theorem 5.33 for a similar kind of statement, albeit with a very different
proof.

Corollary 4.17. Let A be an Abelian category, and suppose we have an exact sequence

0 X• Y • Z• 0f g

in C(A). Then φi :=
(
0 gi

)
defines a quasi-isomorphism φ : C•

f → Z•.

Proof. We have a diagram

0 X• X• 0 0

0 X• Y • Z• 0

id

id f

f g

where the rows are exact. Note, letting z : 0→ Z• be the zero map, that φ is the map obtained
by first applying functoriality, giving C•

f → C•
z , then realizing that C•

z
∼= 0 ⊕ Z• ∼= Z•. In

particular, we have a sequence of morphisms
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0 C•
id C•

f C•
z 0.id⊕f 0⊕g

In particular, it is then clear that this sequence is exact. We know that C•
id is homotopy

equivalent to 0, and therefore that Hi(C•
id) = 0 for all i ∈ Z. Then Proposition 4.15 gives us the

exact sequence
0→ Hi(C•

f ) ∼−→ Hi(Z•)→ 0

where we used that C•
z
∼= Z•. ■

4.3 The Derived Category
Definition 4.18. Let A be an Abelian category. Define the full subcategory of K(A) given by

N = NA := {X• ∈ K(A) | X is quasi-isomorphic to 0}.

Also define the system in C(A) of morphisms

Qis = QisA := {quasi-isomorphisms in C(A)}.

Proposition 4.19. N is a null system in K(A) and S(N ) = Qis in K(A).

Proof. It is clear that N is closed under isomorphism and that 0 ∈ N . That N is closed under
shifting is also clear, since Hi(X[1]•) = Hi+1(X•). Thus, we have (N0)–(N2). To see that (N3)
holds, consider a distinguished triangle

X• → Y • → Z• → X[1]•

with X• and Z• in N . Then the exact sequence

0 −→ Hi(Y •) −→ 0

in A implies that Hi(Y •) = 0 for all i. Thus Y • is also in N . This proves that N is a null
system.

That Qis = S(N ) follows from the fact that the functors Hi are cohomological. In particular,
given a distinguished triangle X• → Y • → Z• → X[1]• where Z• ∈ N , we get an exact sequence

0→ Hi(X•)→ Hi(Y •)→ 0

after shifting to the left. Thus the map X → Y is a quasi-isomorphism. Conversely, if we
have a quasi-isomorphism X• → Y •, then applying the five lemma (Corollary 2.35) we obtain
isomorphisms

Hi(X•) Hi(Y •) Hi(Z•) Hi+1(X•) Hi+1(Y •)

Hi(X•) Hi(Y •) 0 Hi+1(X•) Hi+1(Y •)

∼

∼

∼

∼ ∼

thereby showing that Hi(Z•) = 0. Therefore, QisA = S(NA). ■

Remark 4.20. It follows that while Qis may not be a multiplicative system in C(A), it is a
multiplicative system in K(A).

Finally, we can write down the actual definition of the derived category.
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Definition 4.21. Let A be an Abelian category. The derived category D(A) of A is the Verdier
quotient K(A)/NA.

Remark 4.22. By the above proposition, we see that D(A) = K(A)Qis.
We should now convince ourselves that this is the correct category. To do this, we will show

that it is exactly the localization C(A)Qis. In order to do that, we will first take a diversion into
identifying a universal property of K(A). First, we define the cylinder of a chain complex.

Definition 4.23. Let A• ∈ C(A) be a chain complex. The cylinder I(A)• is the chain complex
given by

I(A)i := Ai ⊕Ai+1 ⊕Ai, di =

diA idAi+1 0
0 −di+1

A 0
0 −idAi+1 diA

 .
Remark 4.24. As usual, one should explicitly check that di+1◦di = 0, but this is “a computation.”

The reason this is called the cylinder is because it is analogous to cylinder objects in topology.
In particular, in topology, a homotopy between two continuous maps X → Y is the same as a
continuous map X × [0, 1] → Y which restricts to the original maps on {0} and {1}. In other
words, maps X × [0, 1]→ Y are in canonical bijection with homotopy equivalent pairs of maps
X → Y with a specified homotopy. The cylinder above also has this property.

Proposition 4.25. Let X• and Y • be chain complexes in an Abelian category A. Then we have
a bijection

HomC(A)(I(X•), Y •) ∼−→ {(f, g, η) | f, g ∈ HomC(A)(X•, Y •), f ∼h g via η : f ⇒ g}

given by (h : I(X)• → Y •) 7→ (h1, h3, h2), where hj, j ∈ {1, 2, 3}, refers to the maps in the
decomposition

hi =
(
hi1 hi2 hi3

)
.

In particular, h1 and h3 define maps of chain complexes X• → Y •.

Proof. Write f i = hi1, ηi+1 = hi2, and gi = hi3. The condition that h is a morphism of chain
complexes means that the diagram

· · · I(X)i I(X)i+1 · · ·

· · · Y i Y i+1 · · ·

di

hi hi+1

di

commutes. Writing out the two possible compositions explicitly, we have

di ◦ hi = di ◦
(
f i ηi+1 gi

)
=
(
di ◦ f i di ◦ ηi+1 di ◦ gi

)
and

hi+1 ◦ di =
(
f i+1 ηi+2 gi+1

)diX idXi+1 0
0 −di+1

X 0
0 −idXi+1 diA


=
(
f i+1 ◦ di f i+1 − ηi+2 ◦ di+1 − gi+1 gi+1 ◦ di

)
.

Since these two are equal, we have that f i+1 ◦ di = di ◦ f i, gi+1 ◦ di = di ◦ gi, and that

di ◦ ηi+1 = f i+1 − ηi+2 ◦ di+1 − gi+1 =⇒ f i+1 − gi+1 = di ◦ ηi+1 + ηi+2 ◦ di+1.

That is, we obtain two maps of chain complexes f, g : X• → Y • and a homotopy η : f ⇒ g. ■
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Lemma 4.26. Let X• be a chain complex in an Abelian category A. Then the canonical in-
clusions i1, i3 : X• → I(X)• of X• to the first and third components are homotopy equivalences
with inverse

(
id 0 id

)
.

Proof. We prove this for i1, since the proof for i3 is similar. Let π =
(
id 0 id

)
. Then it is

easily seen that π ◦ i1 = idX• . To see that i1 ◦ π ∼h idI(X)• , consider the map

η =

0 0 0
0 0 −id
0 0 0

 .
Then

di−1 ◦ ηi + ηi+1 ◦ di =

d
i−1
X idXi 0
0 −diX 0
0 −idXi di−1

X


0 0 0

0 0 −id
0 0 0

+

0 0 0
0 0 −id
0 0 0


diX idXi+1 0

0 −di+1
X 0

0 −idXi+1 diX


=

0 0 −id
0 0 diX
0 0 id

+

0 0 0
0 id −diX
0 0 0

 =

0 0 −id
0 id 0
0 0 id

 = id− i1 ◦ π

so η defines a homotopy id⇒ i1 ◦ π. ■

Remark 4.27. This lemma has an analogue in topology, which may be considered the motivation.
Let X be a topological space, and again consider the cylinder X × [0, 1]. This has a projection
X× [0, 1]→ X by simply forgetting the second variable, and there are two maps X → X× [0, 1]
given by x 7→ (x, 0) and x 7→ (x, 1). It is then true that these maps provide two different
homotopy equivalences between X and X × [0, 1].

Theorem 4.28. Let A be an Abelian category, and let U : C(A)→ K(A) be the obvious functor.
Then for any category E with a functor F : C(A)→ E such that F sends homotopy equivalences
to isomorphisms, there exists a unique functor F̂ : K(A)→ E such that F = F̂ ◦ U .

Proof. We already know that this is true if we have F (f) = F (g) whenever f ∼h g. Thus, it
suffices to show that any F sending homotopy equivalences to isomorphisms satisfies this. Let
f, g : X• → Y • be two homotopy equivalent maps. By Proposition 4.25, this produces a unique
map h : I(X)• → Y • (up to choice of homotopy). We then note that there is a commutative
diagram

X•

I(X)• Y •

X•

f
i1π

h

π i3 g

where π =
(
id 0 id

)
and ik is the inclusion to the kth component. Lemma 4.26 then tells us

that π is a homotopy equivalence, so F (π) is an isomorphism. Furthermore, π ◦ i1 = π ◦ i3 = id,
so we know that both F (i1) and F (i3) are inverses to F (π). Therefore, F (i1) = F (i3). Applying
F to the above commutative diagram then yields

F (f) = F (h) ◦ F (i1) = F (h) ◦ F (i3) = F (g).

This completes the proof. ■
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We name this a theorem because it now yields us our desired equivalence very easily.

Corollary 4.29. Let A be an Abelian category. Then there is a canonical isomorphism of
categories C(A)Qis ∼= D(A).

Proof. We show that D(A) satisfies the universal property of C(A)Qis. Consider a functor
F : C(A) → E sending quasi-isomorphisms to isomorphisms. Note that homotopy equivalences
are necessarily quasi-isomorphisms by the functoriality of cohomology, and therefore F factors
through a unique functor F̂ : K(C) → E . The functor F̂ now sends quasi-isomorphisms to
isomorphisms, and therefore—since we know that D(A) = K(A)Qis—by the universal property
of D(A), this factors uniquely through F̂Qis : D(A)→ E . This provides the unique factorization
of F through D(A). ■

With this, we can be quite convinced that D(A), defined as the Verdier quotient K(A)/NA,
is the correct object to be working with. Having satisfied that, we can move on to actually
studying the derived category. Here, our primary aim is to identify A as living inside D(A) as
a full additive subcategory. To make life easier here, we will to backtrack a little and inspect
some natural functors defined on C(A), namely the truncation functors. These will appear in
an abstract form later in our discussion of t-structures (see Section 5).

Definition 4.30. Let A be an Abelian category, and let X• ∈ C(A). For any n ∈ Z, we define
the chain complexes

τ≤nX• := · · · → Xn−2 → Xn−1 → ker dnX → 0 → 0 → · · ·
τ≥nX• := · · · → 0 → 0 → coker dn−1

X → Xn+1 → Xn+2 → · · ·

This data defines two additive functors τ≤n, τ≥n : C(A)→ C(A).

Remark 4.31. In particular, for a morphism f : X• → Y •, we have that the truncations of f
have the same components as f itself when that statement makes sense, and is zero otherwise.
For τ≤n, for example, we have (τ≤nf)i = f i for i < n, (τ≤nf)i = 0 for i > n, and that (τ≤nf)n
is the canonical induced map ker dnX → ker dnY . That this is an additive functor is clear.

We will now collect some propositions about these truncation functors.

Proposition 4.32. Consider a morphism of chain complexes f : X• → Y •. Then we have
natural isomorphisms Hi(τ≤nX•) = Hi(X•) for i ≤ n, Hi(τ≤nX•) = 0 for i > n, Hi(τ≥nX•) =
Hi(X•) for i ≥ n, and Hi(τ≥nX•) = 0 for i < n. Furthermore, the morphisms which τ≤nf and
τ≥nf induce on cohomology satisfy

Hi(τ≤nf) =
{

Hi(f) for i ≤ n,
0 for i > n.

Hi(τ≥nf) =
{

Hi(f) for i ≥ n,
0 for i < n.

Proof. We provide a proof for τ≤n, since the other one is dual. The first statement follows by the
observation that for i < n, (τ≤nX•)i = Xi and, in particular, the differentials are unaffected.
Therefore, Hi(τ≤nX•) = Hi(X•) in those cases. For i > n, the truncated complex is simply
zero, so there Hi(τ≤nX•) = 0. For i = n, we observe that since the differential dn

τ≤nX
is exactly

dnX (although factored through the inclusion ker dnX ↪→ Xn), we have the diagram
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Hn(X•)

Xn−1 im dn−1 ker dn

Hn(τ≤nX•)

∼

We now prove the second statement. Note that it is trivial for i < n. In particular, the
map Hi(f) depends only on the images of di−1

X and di−1
Y , the kernels of diX and diY , and map

f i. When i < n, these parameters are unchanged after truncation since then (τ≤nf)i = f i, and
therefore Hi(τ≤nf) = Hi(f). On the other hand, the statement is trivial for i > n because then
every map involved is zero. Thus the only seemingly non-trivial case is n = i. However, here
we observe that when we construct the map on cohomology for τ≤nf , we are actually using the
diagram

Xn−1 im dn−1
X ker dnX Hn(X•)

Y n−1 im dn−1
Y ker dnB Hn(Y •)

fn−1 (τ≤nf)n

where (τnf)n is exactly the same map induced on the kernels as in the comparable diagram for
fn. Since the diagram is the same, we see that Hn(τ≤nf) = Hn(f). ■

Proposition 4.33. Suppose we have two maps of chain complexes f, g : X• → Y • where f ∼h g.
Then τ≤nf ∼h τ

≤ng and τ≥nf ∼h τ
≥ng. Thus the truncation functors induce unique functors

τ≤n, τ≥n : K(A)→ K(A).

Proof. Since the truncation functors are additive, it suffices to show the result when f ∼h 0.
Since the proofs are dual, we show the result only for τ≤n.

Suppose f ∼h 0. Then, by definition, we have a homotopy η : f ⇒ 0. Note then that taking
the components ηi for i < n, 0 for i > n, and the induced map ker dnX ↪→ Xn → Y n−1 for i = n
gives a homotopy σ : τ≤nf ⇒ 0. In particular, from the fact that η is a homotopy, we have that
fn = ηn+1 ◦ dnX + dn−1

Y ◦ ηn. Restricting to the kernel means that the left term is just the zero
map, and so we have an equality

(τ≤nf)n = 0 + dn−1 ◦ σn = σn+1 ◦ dn + dn−1 ◦ σn.

This proves the proposition. ■

Proposition 4.34. For all m,n ∈ Z, there is a natural isomorphism τ≤m ◦ τ≥n ∼= τ≥n ◦ τ≤m.
Furthermore, the cohomology functor Hn is the same as the functor which sends X• to the nth
term in the complex τ≤nτ≥nX•.

Proof. When m < n, both the double truncations simply produce the zero complex. When m >
n, the two operations do not touch any overlapping parts of the complex, so the result is clear.
Thus, what remains is m = n. Both τ≤nτ≥nX• and τ≥nτ≤nX• are complexes concentrated in
degree n. Furthermore, the nth terms are exactly ker(coker dn−1

X → Xn+1) and coker(Xn−1 →
ker dn), which we know from Section 2 are both exactly the cohomology of X• at n. The last
statement follows trivially from this also. ■

Remark 4.35. We did not specify the categories we were working inside in the above proposition.
This is because it holds both for C(A) and K(A), and the proof is the same in both cases.
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Proposition 4.36. For all n ∈ Z, the functors Hn : K(A) → A and τ≤n, τ≥n : K(A) →
K(A) induce functors Hn : D(A) → A and τ≤n, τ≥n : D(A) → D(A). Furthermore, Hn is
cohomological, and a morphism f : X• → Y • in D(A) is an isomorphism if and only if Hi(f) is
an isomorphism for all i ∈ Z.

Proof. Since Hi(X•) = 0 for all X• ∈ NA, it immediately induces the given functor D(A)→ A.
That this is cohomological is now automatic. Similarly, if a morphism f : X• → Y • in K(A) is a
quasi-isomorphism, then so are τ≤nf and τ≥nf . Therefore, these induce functors D(A)→ D(A).

To prove the final statement, let f : X• → Y • be a morphism in D(A). Rewrite this as a roof
gs−1, with s : X ′• → X• a quasi-isomorphism and g : X ′• → Y • a morphism in K(A). Then,
since f = Q(g) ◦Q(s)−1 and hence Hi(f) = Hi(g) ◦Hi(s)−1, we have

∀i ∈ Z,Hi(f) is an iso. ⇐⇒ ∀i ∈ Z,Hi(g) is an iso. ⇐⇒ g is a qis. ⇐⇒ f is an iso.

which completes the proof. ■

So far, we have dealt with modifications of the category C(A). We have neglected mentioning
that there are various full subcategories of this which are of interest.

Definition 4.37. Let A be an Abelian category, and let n ∈ Z. Define the full subcategories

C≤n(A) := {X• ∈ C(A) | Xi = 0 for i > n}, C≥n(A) := {X• ∈ C(A) | Xi = 0 for i < n}.

Furthermore, define from these the additional full subcategories

C−(A) =
⋃
n∈Z

C≤n(A), C+(A) =
⋃
n∈Z

C≥n(A), Cb(A) = C−(A) ∩C+(A).

Letting ∗ be any of the above decorations, define K∗(A) in the obvious way. For ∗ ∈ {−,+, b},
define D∗(A) = K∗(A)/(NA ∩K∗(A)).

Remark 4.38. Note that the last definition is actually fine. In particular, the whole theory we
have built for K(A) also works for K∗(A), at least when ∗ ∈ {−,+, b}. Notably, the latter is a
triangulated category. When we appropriately restrict the truncation functors to these, we end
up with functors τ≤n : D+(A)→ Db(A) and τ≥n : D−(A)→ Db(A).
Remark 4.39. Observe also that if X• ∈ C≤n(A), then the obvious map τ≤nX• → X• is a quasi-
isomorphism. Dually, for Y • ∈ C≥n(A), the obvious map Y • → τ≥nY • is a quasi-isomorphism.

We now come to a key proposition which we need for the future. It gives us a simple
description of morphisms in the derived category in a specific restricted context.

Proposition 4.40. [KS06, Prop. 13.1.8] Let n ∈ Z, let X• ∈ K≤n(A), and let Y • ∈ K≥n(A).
Then there is a natural isomorphism

HomD(A)(X•, Y •) ∼= HomA(Hn(X•),Hn(Y •)).

Proof sketch. Lift X• and Y • to C(A), and consider two morphisms f, g : X• → Y • (i.e. not
up to homotopy). Note that any homotopy η : f ⇒ g must consist of only the zero maps, and
therefore f = g. In other words, we have a natural isomorphism

HomK(A)(X•, Y •) ∼= HomC(A)(X•, Y •).

We then compute

HomC(A)(X•, Y •) ∼= {f ∈ HomA(Xn, Y n) | f ◦ dn−1
X = 0, dnY ◦ f = 0}

∼= HomA(coker dn−1
X , ker dnY )

∼= HomA(Hn(X•),Hn(Y •)).
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We now just have to know that in this particular case, HomD(A)(X•, Y •) ∼= HomC(A)(X•, Y •).
To prove this, we will use [KS06, Prop. 2.5.2]. In other words, we need QisY •/ ∩K≥n(A)Y •/

to be cofinal to QisY •/ when Y • ∈ K≥n(A) (which is the situation we are in). This is easily
seen using truncation and some general propositions in abstract nonsense allowing us to deduce
cofinality from the fact that, for any quasi-isomorphism Y • → Z•, we very obviously have a
morphism

(Y • → Z•)→ (Y • → τ≥nZ•).
The full argument can be found by chasing references in [KS06, Lemma 13.1.7]. From the
cofinality, we can compute

HomD(A)(X•, Y •) = lim−→
(Y •→Y ′•)∈QisY •/

HomK(A)(X•, Y ′•)

∼= lim−→
(Y •→Y ′•)∈QisY •/ ∩K≥n(A)Y •/

HomK(A)(X•, Y ′•)

∼= lim−→
Y ′

HomA(Hn(X•),Hn(Y ′•))

∼= HomA(Hn(X•),Hn(Y •)),

where the first ∼= is where we use cofinality. This completes the argument. □

Theorem 4.41. Let A be an Abelian category. Then the composition A → K(A) → D(A)
induces an equivalence between A and the full subcategory of D(A) spanned by those complexes
X• for which Hn(X•) = 0 for all n ̸= 0.

Proof. We show that the functor F : A → D(A) sending X to the complex concentrated in
degree 0 is fully faithful and essentially surjective. That it is fully faithful is a corollary of the
preceding Proposition 4.40. In particular, we have that

HomD(A)(F (X), F (Y )) ∼= HomA(H0(F (X)),H0(F (Y ))) ∼= HomA(X,Y ).

To see that F is essentially surjective, consider a complex X• such that Hi(X•) = 0 for all i ̸= 0.
Then we note that X• ∼= τ≤0X• ∼= τ≥0τ≤0X• ∼= F (H0(X•)). ■

Remark 4.42. A more complete statement would also identify the categories D∗(A), ∗ ∈ {−,+, b},
with certain (obvious) full subcategories of D(A). We will neglect actually proving this. The
full argument can be found in [KS06, Prop. 13.1.12], and it is really a result about comparing
localizations of (full) subcategories with localizations of an ambient category.

Finally, we will want a nice way to produce distinguished triangles in the derived category.
Theorem 4.43. Let A be an Abelian category. Suppose we have an exact sequence

0 −→ X• f−→ Y • −→ Z• −→ 0

in C(A). Then there is a distinguished triangle

X• −→ Y • −→ Z• −→ X[1]•

in D(A).

Proof. By Corollary 4.17, we have a quasi-isomorphism C•
f → Z•. This allows us to define a

map Z• → X[1]• in D(A) and hence define a triangle

X• −→ Y • −→ Z• −→ X[1]•

which must be distinguished since it is isomorphic to a distinguished triangle. ■
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5 t-Structures
This section is dedicated to studying t-structures along with some basic properties and construc-
tions related to them. We mainly follow the exposition in [KS94], but also include content on
extensions and gluing which are not present there. It should also be noted that the proofs in the
aforementioned book are largely based on the ones in [BBDG18]. We begin with a motivating
example for the definition of a t-structure.

Let A be an Abelian category. We know that the derived category D(A) of A has the
structure of a triangulated category. However, the triangulated structure on it does not carry
all the information arising from the chain complexes themselves. Indeed, there are a number of
nice features which do not follow just from the triangles in D(A). To see this, note that we have
two full subcategories

D(A)≤0 = {A• ∈ D(A) | ∀i > 0, Hi(A•) = 0}, D(A)≥0 = {A• ∈ D(A) | ∀i < 0, Hi(A•) = 0}.

Letting D(A)≤n := D(A)≤0[−n], D(A)≥n := D(A)≥0[−n], we see that

D(A)≤n = {A• ∈ D(A) | ∀i > n, Hi(A•) = 0}, D(A)≥n = {A• ∈ D(A) | ∀i < n, Hi(A•) = 0}.

These subcategories verify a few relations. For example, let X• ∈ D(A)≤0 and Y • ∈ D(A)≥1.
Then we note that, by Proposition 4.40 after replacing X• by τ≤0X• and Y • by τ≥1Y • (see
Remark 4.39; the point is that now we have Xi = 0 for i > 0, Y i = 0 for i < 1), we have

HomD(A)(X•, Y •) ∼= HomA(H0(X•),H0(Y •)) ∼= HomA(H0(X•), 0) = 0.

That is, there are no maps from D(A)≤0 to D(A)≥1.
Furthermore, for an arbitrary complex X• ∈ D(A), we have an exact sequence

0 −→ τ≤0X• −→ X• −→ Y • −→ 0

where Y • is the cokernel of τ≤0X• → X•. By Theorem 4.43, this establishes a distinguished
triangle

τ≤0X• −→ X• −→ Y • −→ (τ≤0X•)[1]

in D(A). Now observe that Y • is quasi-isomorphic to τ≥1X•. Indeed, we have a morphism of
chain complexes τ≥1X• → Y • given by

τ≥1X• : · · · 0 coker d0
X X1 · · ·

Y • : · · · 0 im d0
X X1 · · ·

where the epimorphism is described in Section 2.2. This morphism is a quasi-isomorphism, so we
see that Y • ∼= τ≥1X• in D(C), and in particular that that we have an isomorphism of triangles

τ≤0X• X• τ≥1X• (τ≤0X•)[1]

τ≤0X• X• Y • (τ≤0X•)[1]

∼

so that the triangle at the top is distinguished.
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5.1 t-Structures & Truncation Functors
The above computation serves to motivate the following definition, which aims to generalize the
situation to triangulated categories:

Definition 5.1. Let D be a triangulated category. A t-structure on D is a pair (D≤0,D≥0) of
strictly full subcategories of D, called the aisle and co-aisle, such that

(T1) if X ∈ D≤0 and Y ∈ D≥0 then HomD(X,Y [−1]) = 0,

(T2) D≤0[1] ⊆ D≤0 and D≥0[−1] ⊆ D≥0, and

(T3) if X ∈ D, then there is a distinguished triangle X ′ → X → X ′′ → X ′[1] where X ′ ∈ D≤0

and X ′′ ∈ D≥0[−1].

One writes D≤n := D≤0[−n], D≥n := D≥0[−n]. The heart of D with respect to (D≤0,D≥0) is

D♡ := D≤0 ∩ D≥0.

Remark 5.2. Note that using the introduced notation, we see that D≤−1 ⊆ D≤0 and D≥1 ⊆ D≥0.
Similarly, we see that whenever X ∈ D≤0 and Y ∈ D≥1, the only map X → Y is the zero map
X → 0→ Y .
Remark 5.3. The requirement that the subcategories D≤0 and D≥0 are replete (i.e. strictly full)
is, for many purposes, not entirely necessary. It is nonetheless extremely convenient.

Example 5.4. For any triangulated category D, there are two immediate trivial t-structures
one can put on it. In particular, one can set D≤0 = 0 and D≥0 = D, or conversely one can set
D≤0 = D and D≥0 = 0. Both of these are immediately verified to be t-structures.

Example 5.5. A more non-trivial and naturally occuring example of a t-structure is the one
we have provided at the start of this section. In particular, the computation there essentially
proves the following proposition:

Proposition 5.6. Let A be an Abelian category. Then the pair (D(A)≤0,D(A)≥0) gives a
t-structure on D(A). This t-structure is called the standard t-structure on D(A).

Proof. That D(A)≤0, D(A)≥0 are stable under isomorphism is obvious. We have already checked
conditions (T1) and (T3), so what remains is checking (T2). However, that D(A)≤−1 ⊆ D(A)≤0

and D(A)≥1 ⊆ D(A)≥0 is completely obvious. ■

The constructions X• 7→ τ≤nX•, X• 7→ τ≥nX• that we defined earlier are functorial: if we
have complexes X•, Y • ∈ D(A) and a map f• : X• → Y •, then it is easily seen that this induces
a map τ≤nX• → τ≤nY •, given by τ≤nf i = f i for i < n, 0 for i > n, and the induced map
ker dn → ker dn when i = n. The situation for τ≥n is similar. The point is, we see that we have
functors

τ≤n : D(A)→ D(A)≤n, τ≥n : D(A)→ D(A)≥n.

These functors are right (respectively, left) adjoints to the inclusions of D(A)≤n, D(A)≥n into
D(A). To see this, suppose we have X• ∈ D(A) and Y • ∈ D≤n(A). We have a distinguished
triangle

τ≤nX• −→ X• −→ τ≥n+1X• −→ (τ≤nX•)[1].

Since D(A) is a triangulated category, we know that HomD(A)(Y •,−) is a cohomological functor,
so we have an exact sequence

Hom(Y •, (τ≥n+1X•)[−1])→ Hom(Y •, τ≤nX•)→ Hom(Y •, X•)→ Hom(Y •, τ≥n+1X•)
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where we know that

HomD(A)(Y •, (τ≥n+1X•)[−1]) = 0 and HomD(A)(Y •, τ≥n+1X•) = 0

so that we have the isomorphism

HomD(A)(Y •, X•) ∼−→ HomD(A)(Y •, τ≤nX•).

The result then follows from the Yoneda lemma. A similar computation can be done for τ≥n.
These “truncation” functors appear more generally, and this is what we will prove now along

with some properties of these. First, we need a lemma.

Lemma 5.7. Let C be a category, let C′ ⊆ C be a subcategory, and let F : C → C be a functor.
If F (C′) ⊆ C′, then Fn+1(C′) ⊆ Fn(C′) for all n ≥ 0.

Proof. The case n = 0 is true by assumption. For generic n > 0, we have that

Fn+1(C′) ⊆ Fn(C′) ⇐⇒ ∀(Fnc′ Fnf−−−→ Fnc′′) ∈ Fn(C′), F (Fnc′ Fnf−−−→ Fnc′′) ∈ Fn(C′)

⇐⇒ ∀(Fnc′ Fnf−−−→ Fnc′′) ∈ Fn(C′), Fn+1c′ Fn+1f−−−−→ Fn+1c′′) ∈ Fn(C′)

⇐⇒ ∀(Fnc′ Fnf−−−→ Fnc′′) ∈ Fn(C′), Fn(Fc′) Fn(Ff)−−−−−→ Fn(Fc′′)) ∈ Fn(C′)

and the last condition holds by the case n = 0. ■

Lemma 5.8. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then for all
integers m ≥ n, D≤−m ⊆ D≤−n and D≥m ⊆ D≥n.

Proof. It suffices to consider m = n+1, from which the result follows by induction. By assump-
tion, we have that

D≤−1 = D≤0[1] ⊆ D≤0, D≥1 = D≥0[−1] ⊆ D≥0.

Applying the above Lemma 5.7 then gives the desired result. ■

Lemma 5.9. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then for any
n ∈ Z, the pair (D≤n,D≥n) is again a t-structure.

Proof. To verify (T1), let X ∈ D≤n and Y ∈ D≥n+1. Then

HomD(X,Y ) ∼= HomD(X[n], Y [n]) = 0 =⇒ HomD(X,Y ) = 0.

Axiom (T2) follows by the above Lemma 5.8. Finally, we check (T3). Let X ∈ D. Then, by
axiom (T3) for the pair (D≤0,D≥0), we have X ′ ∈ D≤0, X ′′ ∈ D≥1 such that

X ′ −→ X[n] −→ X ′′ −→ X ′[1]

is a distinguished triangle. By (TR2), we get a distinguished triangle

X ′[−n] −→ X −→ X ′′[−n] −→ X ′[−n+ 1]

and by definition X ′[−n] ∈ D≤n, X ′′[−n] ∈ D≥n+1. ■

Theorem 5.10. Let D be a triangulated category with a t-structure (D≤0,D≥0).

(i) The inclusion ι≤n : D≤n → D (resp. ι≥n : D≥0 → D) has a right (resp. left) adjoint
τ≤n : D → D≤n (resp. τ≥n : D → D≥n).
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(ii) For all n ∈ Z and X ∈ D, there exists a unique morphism dnX : τ≥n+1X → (τ≤nX)[1] such
that

τ≤nX X τ≥n+1X (τ≤nX)[1]
dnX

is a distinguished triangle. Furthermore, this data assembles into a natural transformation
dn : τ≥n+1 → [1] ◦ τ≤n.

(iii) The unit η of the adjunction (τ≥n+1, ι≥n+1) and the counit ε of the adjunction (ι≤n, τ≤n)
are given by the triangle

τ≤nX X τ≥n+1X (τ≤nX)[1]εX ηX dnX

and hence any triangle of the form X ′ → X → X ′′ → X ′[1] with X ′ ∈ D≤n, X ′′ ∈ D≥n+1

is canonically isomorphic to the one above.

Proof. (i) By the properties of the shift functor, we may assume n = 0. We will show that τ≤0

and τ≥1 exist. Let Y ∈ D. To show the existence of these adjoint functors, we will show that
the functors

F : HomD(ι≤0(−), Y ) : D≤0 → Ab, G : HomD(Y, ι≥1(−)) : D≥1 → Ab

are representable. By (T3) and (TR2), there exists Y ′ ∈ D≤0, Y ′′ ∈ D≥1 and a distinguished
triangle

Y ′′[−1] −→ Y ′ −→ Y −→ Y ′′.

We show that HomD(X,Y ) ∼= HomD≤0(X,Y ′) for allX ∈ D≤0. By Proposition 3.15, HomD(X,−)
is cohomological, and so from the above we get an exact sequence

HomD(X,Y ′′[−1]) −→ HomD(X,Y ′) −→ HomD(X,Y ) −→ HomD(X,Y ′′)

in Ab. Since X ∈ D≤0, by (T1) this reduces to

0 −→ HomD(X,Y ′) −→ HomD(X,Y ) −→ 0

from which we see that the map HomD≤0(X,Y ′) = HomD(X,Y ′) → HomD(X,Y ) induced by
the distinguished triangle is an isomorphism. In particular, we obtain a natural isomorphism
F ∼= Hom(−, Y ′). An identical but dual computation applied to the distinguished triangle

Y ′ −→ Y −→ Y ′′ −→ Y ′[1]

shows that G ∼= Hom(Y ′′,−). This establishes the existence of τ≤0 and τ≥1. We then have by
standard abstract nonsense that τ≤n, τ≥n exist and are given by

τ≤n = [−n] ◦ τ≤0 ◦ [n], τ≥n = [1− n] ◦ τ≥1 ◦ [n− 1].

(ii) When the map dnX exists, it is unique by Lemma 3.28. Lemma 5.9 implies that for each
X ∈ D, we can choose X ′ ∈ D≤n, X ′′ ∈ D≥n+1 such that

X ′ X X ′′ X ′[1]u v w
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is a distinguished triangle. In (i), the way we show existence of τ≤n, τ≥n actually shows that
τ≤nX = X ′ and τ≥n+1X = X ′′, and that the morphisms u, v are the canonical maps τ≤nX → X,
X → τ≥n+1X. We conclude that we automatically have the desired distinguished triangle

τ≤nX X τ≥n+1X (τ≤nX)[1].
dnX

The only thing which remains is to show that the dnX assemble into a natural transformation
τ≥n+1 → [1] ◦ τ≤n. Suppose we have a map f : X → Y . Then, by (TR3) we obtain a map
ϕ : τ≥n+1X → τ≥n+1Y making the diagram

τ≤nX X τ≥n+1X (τ≤nX)[1]

τ≤nY Y τ≥n+1Y (τ≤nY )[1]

τ≤nf f

dnX

ϕ

dnY

commute. The definition of adjointness immediately gives that the commutativity of the middle
square, in particular the uniqueness of a map of the type of ϕ (see Proposition 3.25), implies
that ϕ = τ≥n+1f .

(iii) This follows immediately from the construction in (i). ■

Definition 5.11. Let D be a triangulated category with a t-structure (D≤0,D≥0). The functors
τ≤n : D → D≤n, τ≥n : D → D≥n are called the truncation functors.

The uniqueness in Theorem 5.10 is quite useful, and allows us to deduce some more properties
of the truncation functors.

Corollary 5.12. Let D be a triangulated category with a t-structure (D≤0,D≥0).

(i) If X ∈ D≤n (resp. Y ∈ D≥n), then τ≤nX → X (resp. Y → τ≥nY ) is an isomorphism.

(ii) If X ∈ D, then X ∈ D≤n (resp. X ∈ D≥n) if and only if τ≥n+1X = 0 (resp. τ≤n−1X = 0).

Proof. (i) This is a consequence of the fact that τ≥n, τ≤n are adjoints of inclusions of full
subcategories (see, for example, Lemma 3.77).

(ii) We have a distinguished triangle

τ≤nX X τ≥n+1X (τ≤nX)[1].

If X ∈ D≤n, then (i) gives that the map τ≤nX → X is an isomorphism, and we have morphisms

τ≤nX τ≤nX 0 (τ≤nX)[1]

τ≤nX X τ≥n+1X (τ≤nX)[1]

id

∼

which implies the dashed arrow is an isomorphism by Proposition 3.17. Conversely, if τ≥n+1X =
0 then we have a distinguished triangle

τ≤nX X 0 (τ≤nX)[1]

which by Lemma 3.18 gives that τ≤nX
∼−→ X. Since t-structures are closed under isomorphism,

this implies X ∈ D≤n. The remaining things follow by a dual proof. ■
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In the definition of a t-structure, we specify two full subcategories. This is actually not
necessary: it suffices to know just D≤0 (or D≥0). We can obtain this as a corollary of the
preceding corollary.

Lemma 5.13. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then 0 ∈ D≤n

and 0 ∈ D≥n for all n ∈ Z. In particular, 0 ∈ D♡.

Proof. Since τ≤n is a right adjoint, it preserves limits. Therefore, τ≤n0 is initial, hence by
Proposition 2.6, it is terminal and therefore τ≤n0 = 0. Similarly, τ≥n is a left adjoint, so it
preserves colimits. Therefore τ≥00 is terminal, and so by Proposition 2.6 it is initial, hence
τ≥n0 = 0. ■

Corollary 5.14. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then

(i) Y ∈ D≥1 if and only if for all X ∈ D≤0, HomD(X,Y ) = 0, and

(ii) X ∈ D≤0 if and only if for all Y ∈ D≥1, HomD(X,Y ) = 0.

Proof. We prove (i), since (ii) follows by a dual proof. When Y ∈ D≥1, Hom(X,Y ) = 0 by
definition of a t-structure. Conversely, suppose HomD(X,Y ) = 0 for all X ∈ D≤0. Then

0 = Hom(X, 0) = Hom(X,Y ) ∼= Hom(X, τ≤0Y )

so τ≤0Y = 0. Therefore, Y ∈ D≥1. ■

Remark 5.15. Let D be an arbitrary triangulated category, and let C ⊆ D be a full subcategory.
We can think of HomD(−,−) as being analogous to an inner product in linear algebra. This
heuristic allows us to denote by C⊥ and ⊥C the full subcategories defined by

C⊥ = {Y ∈ D | ∀X ∈ C, Hom(X,Y ) = 0}, ⊥C = {X ∈ D | ∀Y ∈ C, Hom(X,Y ) = 0}.

Observe then that if (D≤0,D≥0) is a t-structure, the above corollary states that (D≤0)⊥ = D≥1

and ⊥(D≥1) = D≤0. That is, these are “orthogonal complements” of each other.

Corollary 5.16. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then the full
subcategories D≤0 and D≥0 are closed under direct summands. That is, if X ⊕X ′ ∈ D≤0 (resp.
X ⊕X ′ ∈ D≥0), then X,X ′ ∈ D≤0 (resp. X,X ′ ∈ D≥0).

Proof. We show only one assertion, since the other is dual. Let Y ∈ D≥1. If X ⊕X ′ ∈ D≤0, we
have

0 = Hom(X ⊕X ′, Y ) ∼= Hom(X,Y )×Hom(X ′, Y ) =⇒ Hom(X,Y ) = Hom(X ′, Y ) = 0

and therefore X,X ′ ∈ ⊥(D≥1) = D≤0. ■

The above Corollary 5.16 allows us to prove a neat lemma from which we can obtain yet
another consequence of Corollary 5.12.

Lemma 5.17. Let D be a triangulated category with a t-structure (D≤0,D≥0), and let X ∈ D.
If Hom(X, τ≥1X) = 0, then X ∈ D≤0. Similarly, if Hom(τ≤−1X,X) = 0 then X ∈ D≥0.

Proof. We prove the first assertion, since the other is dual. We have the distinguished triangle

τ≤0X X τ≥1X (τ≤0X)[1]0
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which in particular implies we have an isomorphism of triangles

(τ≥1X)[−1] τ≤0X X τ≥1X

(τ≥1X)[−1] (τ≥1X)[−1]⊕X X τ≥1X

∼

0

0

so thatX is a direct summand of τ≤0X. By Corollary 5.16, D≤0 is closed under direct summands,
so X ∈ D≤0. ■

The corollary we want from this is as follows:

Corollary 5.18. Let D be a triangulated category with a t-structure (D≤0,D≥0). If in a distin-
guished triangle

X ′ −→ X −→ X ′′ −→ X ′[1]

we have X ′, X ′′ ∈ D≤0 (resp. X ′, X ′′ ∈ D≥0) then X ∈ D≤0 (resp. X ∈ D≥0).

Proof. We prove this for the case X ′, X ′′ ∈ D≤0. The other case follows by a dual argument.
Since X ′, X ′′ ∈ D≤0, we have that Hom(X ′, τ≥1X) = Hom(X ′′, τ≥1X) = 0 by (T1) and the
definition of τ≥1X. Since Hom(−, τ≥1X) is cohomological, we have the exact sequence

0 = Hom(X ′′, τ≥1X) −→ Hom(X, τ≥1X) −→ Hom(X ′, τ≥1X) = 0

and so Hom(X, τ≥1X) = 0. This implies that X ∈ D≤0 by Lemma 5.17. ■

5.2 The Heart is Abelian
We return to the example case of the derived category D(A) of an Abelian category. We have
a functor A → D(A) given by the composition

A −→ K(A) −→ D(A),

i.e. by sending A ∈ A to the complex concentrated in degree zero. Now consider the standard
t-structure (D(A)≤0,D(A)≥0) on D(A). The heart D(A)♡ of this t-structure consists of the
full subcategory spanned by complexes concentrated in degree zero. By Theorem 4.41, we then
know that the above functor induces an equivalence between D(A)♡ and A. In particular, the
heart is an Abelian category. Remarkably, this is always the case in any triangulated category
with a t-structure.

Proposition 5.19. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then the
heart D♡ is a full additive subcategory of D.

Proof. By Lemma 5.13, 0 ∈ D♡. To show that D♡ has direct sums, we use the orthogonality
condition from Corollary 5.14. In particular, let Z ∈ D≤−1. Then

Hom(Z,X ⊕ Y ) ∼= Hom(Z,X)⊕Hom(Z, Y ) = 0

since X,Y ∈ D≥0. This shows that X ⊕ Y ∈ D≥0. Similarly, let W ∈ D≥1. Then

Hom(X ⊕ Y,W ) ∼= Hom(X,W )⊕Hom(Y,W ) = 0

since X,Y ∈ D≤0. This shows that X ⊕ Y ∈ D≤0. Therefore, X ∈ D♡.
Since D♡ is a full subcategory of an additive category, it is pre-additive. Since it admits a

zero object and finite direct sums, it is additive. ■
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Theorem 5.20. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then D♡ is
an Abelian category. Furthermore, if f : X → Y is a morphism in D♡ and X → Y → Z → X[1]
is a distinguished triangle extending this, then τ≥0Z = coker f and τ≤0(Z[−1]) = ker f in D♡.

Proof. By Proposition 5.19, D♡ is additive. Hence, what remains is to construct the kernel and
cokernel, and to show that the image is the coimage.

Let f : X → Y be a morphism in D♡. Then we have a distinguished triangle

X
f−→ Y −→ Z −→ X[1]

and shifting this to the left shows that Z ∈ D≤0 ∩ D≥−1. Intuitively, Z lives in degrees −1 and
0, and the idea is that we will try to show that the two parts it contains are precisely the kernel
and cokernel. For all W ∈ D♡, we have exact sequences

Hom(X[1],W ) Hom(Z,W ) Hom(Y,W ) Hom(X,W ),

Hom(W,Y [−1]) Hom(W,Z[−1]) Hom(W,X) Hom(W,Y ).

Since W ∈ D♡, we see that Hom(W,Y [−1]) = 0 and Hom(X[1],W ) = 0. Furthermore, we have
natural isomorphisms

Hom(Z,W ) ∼= Hom(τ≥0Z,W ) and Hom(W,Z[−1]) ∼= Hom(W, τ≤0(Z[−1])).

Thus, in totality, we have the exact sequences

0 Hom(τ≥0Z,W ) Hom(Y,W ) Hom(X,W ),

0 Hom(W, τ≤0(Z[−1])) Hom(W,X) Hom(W,Y ).

By the Yoneda lemma, this implies that τ≥0Z = coker f and τ≤0(Z[−1]) = ker f .
We have thus established that D♡ is additive and admits kernels and cokernels. It remains

to check that the image is the coimage. Place the map Y → τ≥0Z = coker f into a distinguished
triangle

Y −→ τ≥0Z −→ E −→ Y [1]

and shift to the right to obtain the distinguished triangle

E[−1] −→ Y −→ τ≥0Z −→ E.

Note that by shifting the first triangle, we see that E ∈ D≤0 ∩ D≥−1. Since E “contains” both
the kernel and cokernel of the map Y → τ≥0Z, we will write I = E[−1] (where we see that
I ∈ D≤1∩D≥0) so that τ≤0I is the image of f . We now consider the three distinguished triangles

Y −→ Z −→ X[1] −→ Y [1]
Y −→ τ≥0Z −→ I[1] −→ Y [1]
Z −→ τ≥0Z −→ (τ≤−1Z)[1] −→ Z[1]

and apply (TR4) to obtain the commutative diagram
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X[1]

Z I[1]

τ≥0Z

Y (τ≤−1Z)[1]

from which, after shifting, we extract a distinguished triangle

(τ≤−1Z)[−1] −→ X −→ I −→ τ≤−1Z.

By shifting to the left, we see that I ∈ D≤0, so I ∈ D♡. We have that

[−1] ◦ τ≤−1 = [−1] ◦ [1] ◦ τ≤0 ◦ [1] =⇒ (τ≤−1Z)[−1] = τ≤0(Z[−1]) = ker f,

so we really have a distinguished triangle

ker f −→ X −→ I −→ τ≤−1Z.

which shows that I = τ≥0I = coim f (where the first equality is from I ∈ D≤0∩D≥0). Similarly,
the shift

Y −→ coker f −→ I[1] −→ Y [1]

of the distinguished triangle that we started with shows that im f = τ≤0I = I. Thus, coim f =
im f , and we have shown that D♡ is an Abelian category. ■

5.3 Cohomology Functors & More on Truncation

Recall again that D(A)♡ ∼= A with the standard t-structure. This implies that for all n, the
cohomology functor Hn : D(A)→ A can be made into a functor D(A)→ D(A)♡. Furthermore,
note that it is easily seen that the cohomology functor is given by τ≤nτ≥n (which is also clearly
equivalent to τ≤nτ≥n in this situation). We can replicate this in the generality of t-structures.

Definition 5.21. Let D be a triangulated category with a t-structure (D≤0,D≥0). The zeroth
cohomology functor with respect to this t-structure is

H0 : D → D♡, H0 := τ≥0 ◦ τ≤0.

More generally, for any n ∈ Z we define the nth cohomology functor

Hn : D → D♡, Hn := H0 ◦ [n]

Remark 5.22. Note that since

τ≥n ◦ τ≤n = [−n] ◦ τ≥0 ◦ [n] ◦ [−n] ◦ τ≤0 ◦ [n] = [−n] ◦ τ≥0 ◦ τ≤0 ◦ [n]

we have
Hn = τ≥0 ◦ τ≤0 ◦ [n] = [n] ◦ ([−n] ◦ τ≥0 ◦ τ≤0 ◦ [n]) = [n] ◦ τ≥n ◦ τ≤n.
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Before we say anything about these cohomology functors, we should check that the truncation
functors interact well with each other. In particular, above we chose to write H0 = τ≥0 ◦ τ≤0,
but we could’ve chosen the opposite composition too. This would still have given a well-defined
functor to the heart. We really want these two to agree.

Proposition 5.23. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then

(i) if m ≤ n, we have natural isomorphisms

τ≤n ◦ τ≤m ∼= τ≤m ◦ τ≤n ∼= τ≤m and τ≥n ◦ τ≥m ∼= τ≥m ◦ τ≥n ∼= τ≥n,

(ii) if m > n, then τ≥m ◦ τ≤n = τ≤n ◦ τ≥m = 0, and

(iii) for all m,n ∈ Z, τ≤n ◦ τ≥m ∼= τ≥m ◦ τ≤n, and for each X ∈ D there is a unique map
τ≥mτ≤nX → τ≤nτ≥mX such that

τ≤nX X τ≥mX

τ≥mτ≤nX τ≤nτ≥mX

commutes which is furthermore an isomorphism.

Proof. (i) Let X ∈ D. Since τ≤mX ∈ D≤m, we have that the canonical map τ≤nτ≤mX → τ≤mX
is an isomorphism by Corollary 5.12, which implies we have an equivalence τ≤n◦τ≤m = τ≤m. To
see that τ≤m ◦ τ≤n = τ≤m, take Y ∈ D≤m ⊆ D≤n and note that we have natural isomorphisms

Hom(Y, τ≤mτ≤nX) ∼= Hom(Y, τ≤nX) ∼= Hom(Y,X) ∼= Hom(Y, τ≤mX)

so Hom(−, τ≤mτ≤nX) = Hom(−, τ≤mX). This gives the equivalence τ≤m ◦ τ≤n = τ≤m. The
statements for τ≥∗ follow similarly from a dual argument.

(ii) Let X ∈ D. Then τ≥mX ∈ D≥m, so Corollary 5.12 together with part (i) says that
τ≤nτ≥mX = 0 since n < m. Similarly, τ≤nX ∈ D≤n, so τ≥mτ≤nX = 0.

(iii) By part (ii), we may assume that m ≤ n. By Theorem 5.10(ii), we have the two
distinguished triangles

τ≤nτ≥mX τ≥mX τ≥n+1τ≥mX (τ≤nτ≥mX)[1]

τ≤m−1τ≤nX τ≤nX τ≥mτ≤nX (τ≤m−1τ≤nX)[1]

which, using part (i) and (TR2) we can rewrite as

(τ≥n+1X)[−1] τ≤nτ≥mX τ≥mX τ≥n+1X

τ≤nX τ≥mτ≤nX (τ≤m−1X)[1] (τ≤nX)[1]

and Corollary 5.18 then tells us that τ≤nτ≥mX, τ≥mτ≤nX ∈ D≤n∩D≥m. We then have natural
isomorphisms

Hom(τ≥mτ≤nX, τ≤nτ≥mX) ∼= Hom(τ≥mτ≤nX, τ≥mX) ∼= Hom(τ≤nX, τ≥mX),
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which allows us to produce a unique map τ≥mτ≤nX → τ≤nτ≥mX from the composition τ≤nX →
X → τ≥mX, which by the nature of the above canonical isomorphisms implies exactly that the
desired diagram commutes.

Let ϕ : τ≥mτ≤nX → τ≤nτ≥mX be the morphism constructed above. We now wish to show
that it is an isomorphism. First, we use the octahedral axiom (TR4) on the distinguished
triangles 

τ≤m−1X −→ τ≤nX −→ τ≥mτ≤nX −→ (τ≤m−1X)[1]
τ≤m−1X −→ X −→ τ≥mX −→ (τ≤m−1X)[1]
τ≤nX −→ X −→ τ≥n+1X −→ (τ≤nX)[1]

to obtain a commutative diagram

τ≥mτ≤nX

τ≤nX τ≥mX

X

τ≤m−1X τ≥n+1X

f

g

from which we get the distinguished triangle

τ≥mτ≤nX τ≥mX τ≥n+1X (τ≥mτ≤nX)[1].f g

However, since τ≥mτ≤nX ∈ D≤n∩D≥m and τ≥n+1X ∈ D≥n+1, and the fact that a representation
of this type is unique (which we see from the proof of Theorem 5.10, essentially by the uniqueness
of adjoints), we get that τ≥mτ≤nX = τ≤nτ≥mX. ■

As a result of the above proposition, we have natural isomorphisms

H0 ∼= τ≥0 ◦ τ≤0 ∼= τ≤0 ◦ τ≥0

so it doesn’t matter which order we truncate.

Corollary 5.24. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then for any
map f : X → Y in the heart D♡ which extends to a distinguished triangle X → Y → Z → X[1],
we have that

ker f = H−1(Z) and coker f = H0(Z).

Proof. This is an immediate consequence of Theorem 5.20 together with Proposition 5.23. ■

Remark 5.25. In the notation of Remark 3.3, we see that ker f ∼= H−1(Cf ) ∼= H0(Kf ) and
coker f ∼= H0(Cf ) ∼= H1(Kf ).

We can use the cohomology functors to detect, in some cases, when an object is in D≤0 or
D≥0.

Proposition 5.26. Let D be a triangulated category with a t-structure (D≤0,D≥0). Let X ∈ D,
and suppose that there exists some n ∈ Z such that X ∈ D≤n (resp. X ∈ D≥n). Then X ∈ D≤0

(resp. X ∈ D≥0) if and only if Hi(X) = 0 for all i > 0 (resp. i < 0).
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Proof. We consider the case X ∈ D≤n, since the other one follows by a dual proof. The map
τ≤nX → X is an isomorphism since X ∈ D≤n. If X ∈ D≤0, then it is clear that Hi(X) = 0
for all i > 0 by Corollary 5.12. Conversely, if X ∈ D≤n and n ≤ 0, then we already know
X ∈ D≤n ⊆ D≤0, so all statements in the proposition are verified. In the other case, i.e.
n > 0, we see that if Hi(X) = 0 for all i > 0, then in particular Hn(X) = 0. We then have a
distinguished triangle

τ≤n−1τ≤nX −→ τ≤nX −→ τ≥nτ≤nX −→ (τ≤n−1τ≤nX)[1]

which we compute as

τ≤n−1X −→ X −→ Hn(X)[−n] −→ (τ≤n−1X)[1]

from which we obtain the distinguished triangle

τ≤n−1X −→ X −→ 0 −→ (τ≤n−1X)[1].

By Lemma 3.18, the map τ≤n−1X → X is an isomorphism, and therefore X ∈ D≤n−1. Contin-
uing by induction shows that X ∈ D≤0. ■

Corollary 5.27. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then if

0 −→ X −→ Y −→ Z −→ 0

is a short exact sequence in D♡, there is a unique map Z → X[1] such that

X −→ Y −→ Z −→ X[1]

is a distinguished triangle.

Proof. We begin by extending the first map into a distinguished triangle

X −→ Y −→ Z ′ −→ X[1].

This triangle tells us that Z ′ ∈ D≤0 ∩D≥−1. By the first isomorphism theorem (Theorem 2.28),
exactness says that H−1(Z ′) = ker(X → Y ) = im(0 → X) = 0, and H0(Z ′) = coker(X →
Y ) = Z. We therefore know that Hi(Z ′) = 0 for all i < 0, so Z ′ ∈ D≥0, which implies that
Z ′ ∈ D♡. Thus Z ′ = H0(Z ′) = Z. We therefore obtain the desired map Z → X[1] from the map
Z ′ → X[1]. Uniqueness follows from Lemma 3.28. ■

5.4 Extensions in the Heart

In an Abelian categoryA with enough injectives, it is possible to define the Ext-groups ExtiA(A,B)
for any A,B ∈ A using standard homological methods (i.e. by taking an injective resolution of
B). In the situation of a triangulated category D with a t-structure, we do not know that the
heart D♡ is nice enough to have enough injectives. In such a circumstance, it is still possible to
define Ext-groups without utilizing injective (or projective) resolutions, as was done by Yoneda
in [Yon60]. A more modern reference would be [MLan95].

We will take various facts about these Yoneda Ext-groups as known to the reader in the
following exposition. In particular, we will make the definition

Definition 5.28. Let A be an Abelian category, and let A,B in A. We let Ext(A,B) be the
Abelian group whoose elements are extensions

0 −→ B −→ E −→ A −→ 0

up to Yoneda equivalence (congruence in [MLan95]) and whose addition is given by the Baer
sum, i.e. E + E ′ = (∇B)∗(∆A)∗(E ⊕ E ′) for E , E ′ ∈ Ext(A,B).
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Facts about Ext (e.g. functoriality, the fact that it is well-defined at all, facts about the Baer
sum, and so forth) are assumed as prerequisites. We now provide a characterization of Ext when
A = D♡.
Remark 5.29. One should note that Ext(A,B) need not be a small set.

Theorem 5.30. Let D be a triangulated category with a t-structure (D≤0,D≥0). Let X,Y ∈ D♡.
Then Hom(X,Y [1]) = Ext(X,Y ). In particular, we have a natural isomorphism

HomD♡(−, (−)[1]) ∼= Ext(−,−).

Proof. We construct a map Hom(X,Y [1]) → Ext(X,Y ) as follows: consider a morphism f :
X → Y [1]. Then by (TR1) we can complete this to a distinguished triangle

X −→ Y [1] −→ Z −→ X[1]

which, after shifting using (TR2), becomes

Y E X Y [1]i p f

where E := Z[−1]. This is our prospective element of Ext(X,Y ). In particular, we must show
that the sequence

0 Y E X 0i p

is exact. To prove this, we will first unravel the distinguished triangle to

X[−1] Y E X Y [1].−f [−1] i p f

Let W ∈ D♡. Since Hom(W,−) is cohomological, we obtain an exact sequence

0 Hom(W,Y ) Hom(W,E) Hom(X,W ).i ◦ p ◦

From this, we get that composition with i on the left is injective so that i is a monomorphism,
which implies exactness at Y . Furthermore, since i is a monomorphism, we have that im i = Y .
Therefore, to check exactness at E we need to check that ker p = Y . This follows from the above
exact sequence, in particular exactness at Hom(W,E): suppose we have some map g : W → E
such that p ◦ g = 0. Then g ∈ ker(p ◦) and therefore exactness tells us that there is some
h : W → Y such that g = i ◦ h. Furthermore, injectivity of left composition with i implies that
this choice is unique, and therefore Y satisfies the universal property of the kernel.

To check exactness at X, we consider the cohomological functor Hom(−,W ). From this, we
get the exact sequence

0 Hom(X,W ) Hom(E,W ) Hom(Y,W ).◦ p ◦ i

Hence right composition with p is injective, so p is an epimorphism. We note that im p = X if
and only if coker i = X. In particular,

im p = coker(ker p→ E) ∼= coker(im i→ E) = coker i.

So we need to show that coker i = X. However, this follows from the exactness of the above
diagram: suppose we have a map g : E →W such that g ◦ i = 0, i.e. g ∈ ker(◦ i). Then exactness
says that we have some h : X → W such that g = h ◦ p, and the choice is unique since p is an
epimorphism. Therefore, X is the cokernel of i, so we have exactness at X.
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Thus, from the morphism f : X → Y [1], we have constructed an exact sequence. This
prospectively defines a map of sets Hom(X,Y [1]) → Ext(X,Y ), with the caveat that we have
to check that it is well-defined (i.e. independent of the choice of cone), but this follows trivially
using Proposition 3.17. We must now check that this is natural, bijective, and compatible with
the group structures involved. We start by showing that it is natural.

Fix Y ∈ D♡, and consider the functors Hom(−, Y [1]) and Ext(−, Y ). Let ρ(−) : Hom(−, Y [1])→
Ext(−, Y ) denote the map defined above. We must show that, for any morphism α : X → X ′,
the diagram

Hom(X,Y [1]) Ext(X,Y )

Hom(X ′, Y [1]) Ext(X ′, Y )

ρX

α∗

ρX′

α∗

commutes. Let f ∈ Hom(X ′, Y [1]). Then the extensions ρX′(f), α∗ρX′(f), and ρX(α∗f) are the
top, middle, and bottom row of the following commutative diagram:

0 Y Kf X ′ 0

0 Y Kf ×X′ X X 0

0 Y Kf◦α X 0

α

?

(5)

We then see that if we can produce a map Kf◦α → Kf which we can apply the universal
property of Kf ×X′ X to, we will produce a map filling in the arrow indicated by “?” in the
above diagram. Then we will see that ρX(α∗f) = α∗ρX′(f). Actually, we also need to check
that the bottom left square commutes, but from the way we construct the map Kf◦α → Kf

this will follow by comparing components. We will construct the desired map using (TR4). In
particular, by applying it to α, f , and f ◦ α, i.e. the triangles

X
α−→ X ′ −→ Kα[1] −→ X[1]

X
f◦α−→ Y [1] −→ Kf◦α[1] −→ X[1]

X ′ f−→ Y [1] −→ Kf [1] −→ X ′[1]

we obtain the diagram

X X ′ Kα[1] X[1]

X Y [1] Kf◦α[1] X[1]

X ′ Y [1] Kf [1] X ′[1]

Kα[1] Kf◦α[1] Kf [1] Kα[2]

α

f u[1]
f◦α

α v[1] α[1]
f

and in particular, after shifting, we have that the map v : Kf◦α → Kf sits in the diagram
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Y Kf◦α X

Y Kf X ′

v α

from which we obtain the desired map Kf◦α → Kf ×X′ X. That the bottom left square
in (5) commutes now follows from comparing components (i.e. using the uniqueness in the
universal property of the fiber product). This proves that we have a natural transformation
Hom(−, Y [1])→ Ext(−, Y ).

We use a similar argument to obtain the naturality of η(−) : Hom(X, (−)[1]) → Ext(X,−)
for a fixed X. In particular, consider a map β : Y → Y ′. We must show that the diagram

Hom(X,Y [1]) Ext(X,Y )

Hom(X,Y ′[1]) Ext(X,Y ′)

ηY

(β[1])∗ (β[1])∗

ηY ′

commutes. Like before, the extensions ηY (f), (β[1])∗ηY (f), and ηY ′(β∗f) sit as the first, second,
and third row in the commutative diagram

0 Y Kf X 0

0 Y ′ Kf ⊔Y Y ′ X 0

0 Y ′ Kβ[1]◦f X 0

β

?

We now apply (TR4) to f and β[1], that is the triangles
X

f−→ Y [1] −→ Kf [1] −→ X[1]
X

β[1]◦f−→ Y ′[1] −→ Kβ[1]◦f [1] −→ X[1]
Y [1] β[1]−→ Y ′[1] −→ Kβ[1][1] −→ Y [2]

to obtain the commutative diagram

X Y [1] Kf [1] X[1]

X Y ′[1] Kβ[1]◦f [1] X[1]

Y [1] Y ′[1] Kβ[1][1] Y [2]

Kf [1] Kβ[1]◦f [1] Kβ[1][1] Kf [2]

f

β[1] u[1]
β[1]◦f

f v[1] f [1]
β[1]

where the two top rows allow us to provide the desired map Kf → Kβ[1]◦f . This shows that
ηY ′((β[1])∗f) = (β[1])∗ηY (f). Thus we see that we have a natural transformation Hom(X, (−)[1])→
Ext(X,−). This completes the proof that the map Hom(X,Y [1])→ Ext(X,Y ) is natural.
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For any X,Y , denote the map Hom(X,Y [1])→ Ext(X,Y ) by ρXY , or just ρ when X and Y
are obvious. We will now show that this is a group homomorphism. Let f, g ∈ Hom(X,Y [1]).
The addition in D♡ allows us to write f + g as the composition

X X ⊕X Y [1]⊕ Y [1] Y [1]∆X f⊕g ∇Y

or, more concisely, f + g = ∇Y ◦ (f ⊕ g) ◦ ∆X = (∇Y )∗(∆X)∗(f ⊕ g). We now note that the
addition for E , E ′ ∈ Ext(X,Y ) is defined by E +E ′ = (∇Y )∗(∆X)∗(E ⊕E ′). Therefore, supposing
we know that ρ(f ⊕ g) = ρ(f)⊕ ρ(g), we can calculate

ρ(f) + ρ(g) = (∇Y )∗(∆X)∗(ρ(f)⊕ ρ(g))
= (∇Y )∗(∆X)∗ρ(f ⊕ g)
= ρ((∇Y )∗(∆X)∗(f ⊕ g)) = ρ(f + g)

using naturality. Thus it suffices to show that ρ(f ⊕ g) = ρ(f) ⊕ ρ(g). However, this follows
by applying Proposition 3.22, (TR3), and Proposition 3.17 to see that the dashed arrow in the
commutative diagram

Y ⊕ Y Kf⊕g X ⊕X Y [1]⊕ Y [1]

Y ⊕ Y Kf ⊕Kg X ⊕X Y [1]⊕ Y [1]

f⊕g

f⊕g

is an isomorphism. Therefore ρXY is a group homomorphism for all X,Y .
It remains to show that ρXY is bijective. Let f ∈ Hom(X,Y [1]) and suppose that ρ(f) = 0,

i.e. that the extension

0 Y Kf X 0

is split. We then have an isomorphism ϕ : Kf
∼−→ Y ⊕X which sits in the diagram

Y Kf X Y [1]

Y Y ⊕X X Y [1]

ϕ

f

ψ

0

where the map ψ exists by (TR3) and is an isomorphism by Proposition 3.17. We then have
that ψ ◦ f = 0, so f = 0 since ψ is an isomorphism (hence a monomorphism). Therefore, ρ is
injective.

To see that ρ is surjective, suppose we have an extension E ∈ Ext(X,Y ) given by

0 Y E X 0.

Then Corollary 5.27 tells us that there is a unique map h : X → Y [1] such that

Y E X Y [1]h

is a distinguished triangle. We now see that ρ(h) = E , so that ρ is surjective. ■
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Corollary 5.31. Let X,Y ∈ D♡. Then every extension

0 −→ Y −→ E −→ X −→ 0

splits if and only if Hom(X,Y [1]) = 0.

Proof. Every extension splits precisely when Hom(X,Y [1]) = Ext(X,Y ) = 0. ■

Using Theorem 5.30, we can obtain a version of the long exact sequence for Ext. In particular,
one can make the definition

Definition 5.32. Let D be a triangulated category with a t-structure (D≤0,D≥0). For all pairs
of objects X,Y ∈ D♡, we set

Exti(X,Y ) := Hom(X,Y [i]).

Trivially, Ext0 = Hom, and Theorem 5.30 says exactly that Ext1 = Ext, so Corollary 5.27
together with Proposition 3.15 immediately gives that from a short exact sequence

0 −→ X −→ Y −→ Z −→ 0

we obtain a long exact sequence

0 Hom(E,X) Hom(E, Y ) Hom(E,Z)

Ext(E,X) Ext(E, Y ) Ext(E,Z)

Ext2(E,X) Ext2(E, Y ) Ext2(E,Z)

· · ·

which, at least for the first two rows, agrees with the one from standard homological algebra.
Yoneda, in [Yon60], defines not only a version of Ext1 independent of having enough injectives,
but also a version of Exti in general which does not depend on injectives. It is possible to
show that these agree with “ordinary” Ext-groups (this is done for modules in, for example,
[Yon54], and more generally for exact categories in [FS10, Thm. 6.42, Thm. 6.43, Remark 6.44])
when the Abelian category is nice enough to define them. However, it is not true that the
Ext-groups defined above (using Hom in D♡) agrees with all the Yoneda Ext-groups. What is
true is that Exti(X,Y ) is given by HomD(D♡)(X,Y [i]). In other words, the failure will arise
from the difference between D itself and the derived category D(D♡). There are various ways
of studying how these two categories relate to each other, and one example for the interested
reader is through realisation functors; see [PV17] for one possible survey. Here, essentially one
further endows the objects of a triangulated category with “filtrations” and uses this additional
information to do the comparison.

In any case, we see that in a triangulated category D with a t-structure, the Ext-groups
Exti(X,Y ) in the heart D♡ are genuinely given by Hom(X,Y [i]) at least for i = 0, 1, so this
structure is determined in a sense by the ambient triangulated category.
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5.5 Cohomology is Cohomological
We have seen that any short exact sequence in the heart gives rise to a unique distinguished tri-
angle in the ambient category. Similarly, any distinguished triangle contained in the heart gives
rise to a short exact sequence. However, if we weaken this and allow an arbitrary distinguished
triangle in the ambient triangulated category, it is not true: not every distinguished triangle
in a triangulated category with a t-structure gives rise to a short exact sequence in the heart.
However, we have a partial converse which illustrates that the cohomology functors Hn defined
earlier behave precisely how we wish them to. In particular, by applying cohomology, we obtain
a long exact sequence from any distinguished triangle.

Theorem 5.33. Let D be a triangulated category with a t-structure (D≤0,D≥0). Then the
cohomology functors Hn : D → D♡ are cohomological.

Proof. Due to how Hn is defined, it suffices to show that H0 is cohomological. The proof proceeds
in three steps. First, we will show the result when in a distinguished triangle

X −→ Y −→ Z −→ X[1]

we know that X,Y, Z ∈ D≤0 (or, dually, X,Y, Z ∈ D≥0). The second step is to make two out of
X, Y and Z arbitrary, and the final step is to have a completely arbitrary distinguished triangle.

Suppose we have a distinguished triangle as above, and suppose X,Y, Z ∈ D≤0. We need to
show that

H0(X) −→ H0(Y ) −→ H0(Z) −→ 0
is exact in D♡. Let W ∈ D♡. Applying Hom(−,W ), we have canonical isomorphisms

Hom(H0(Z),W ) = Hom(τ≥0τ≤0Z,W ) ∼= Hom(τ≤0Z,W ) ∼= Hom(Z,W )

and similarly for X and Y , while Hom(X[1],W ) = 0 (since X[1] ∈ D≤−1 and W ∈ D≥0). From
this, we deduce that we have an exact sequence

0 −→ Hom(Z,W ) −→ Hom(Y,W ) −→ Hom(X,W )

which from the prior computation gives the exact sequence

0 −→ Hom(H0(Z),W ) −→ Hom(H0(Y ),W ) −→ Hom(H0(X),W ).

A dual proof shows that when X,Y, Z ∈ D≥0, we have the exact sequence

0 −→ H0(X) −→ H0(Y ) −→ H0(Z).

Now suppose that X,Y are arbitrary, while Z ∈ D≥0. We again show that the above diagram
is exact. Let W ∈ D≤−1. Then

Hom(W,Z) = 0 and Hom(W,Z[−1]) = 0

so the long exact sequence we get after applying Hom gives a natural isomorphism Hom(W,X) ∼−→
Hom(W,Y ). We then have isomorphisms

Hom(W, τ≤−1X) ∼= Hom(W,X) ∼−→ Hom(W,Y ) ∼= Hom(W, τ≤−1Y )

so we have an isomorphism τ≤−1X
∼−→ τ≤−1Y . In order to reduce to the case in the first step,

we want to obtain a distinguished triangle of the form

τ≥0X −→ τ≥0Y −→ Z −→ (τ≥0X)[1].

90



5.5 Cohomology is Cohomological 5 t-Structures

To do this, we use (TR4). In particular, we use that distinguished triangles are closed under
isomorphism, so we have the distinguished triangles

τ≤−1X −→ X −→ τ≥0X −→ (τ≤−1X)[1]
τ≤−1X −→ Y −→ τ≥0Y −→ (τ≤−1X)[1]
X −→ Y −→ Z −→ X[1]

and get the diagram

τ≤−1X X τ≥0X (τ≤−1X)[1]

τ≤−1X Y τ≥0Y (τ≤−1X)[1]

X Y Z X[1]

(τ≥0X)[1]

where the dashed arrows give the desired distinguished triangle. Since τ≥0X, τ≥0Y ∈ D≥0, we
have natural isomorphisms H0(X) ∼= H0(τ≥0X) and H0(Y ) ∼= H0(τ≥0Y ). Therefore, applying
H0 gives the desired exact sequence

0 −→ H0(X) −→ H0(Y ) −→ H0(Z).

An essentially identical computation shows that if Y and Z are arbitrary while X ∈ D≤0, we
get the exact sequence

H0(X) −→ H0(Y ) −→ H0(Z) −→ 0.
Finally, consider the case when X, Y , and Z are totally arbitrary. We apply (TR4) to the

composition
τ≤0X −→ X −→ Y,

that is, to the distinguished triangles
τ≤0X −→ X −→ τ≥1X −→ (τ≤0X)[1]
τ≤0X −→ Y −→ C −→ (τ≤0X)[1]
X −→ Y −→ Z −→ X[1]

where C is a cone of the given composition. Applying (TR4) then gives the diagram

τ≥1X

X C

Y

τ≤0X Z
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which contains two distinguished triangles of interest, namely{
τ≤0X −→ Y −→ C −→ (τ≤0X)[1],
τ≥1X −→ C −→ Z −→ (τ≥1X)[1].

Using the previously established results, the first triangle above gives that we have the exact
sequence

H0(X) −→ H0(Y ) −→ H0(C) −→ 0

and, after shifting the second triangle by one, we have the exact sequence

0 −→ H0(C) −→ H0(Z) −→ H0((τ≥1X)[1])

which, together with the commutativity of the big diagram above, lets us conclude that we have
the exact sequence

H0(X) −→ H0(Y ) −→ H0(Z).

More precisely, the first exact sequence gives that the map H0(Y )→ H0(C) is an epimorphism,
and the second one gives that the map H0(C)→ H0(Z) is a monomorphism. Finally, the diagram
above gives that the composition

H0(Y ) ↠ H0(C) ↪→ H0(Z)

is exactly the map H0(Y )→ H0(Z). Thus we conclude the exactness of the given sequence since
the kernels of

H0(Y ) −→ H0(C) and H0(Y ) −→ H0(Z)

are the same. ■

Note that for any X ∈ D♡, we have a natural isomorphism H0(X) ∼= X. Therefore, the
above theorem specializes to the fact that any distinguished triangle in the heart gives a short
exact sequence in the heart. Theorem 5.33 also allows us to deduce a version of the long exact
sequence in cohomology. In particular, we have

Corollary 5.34. Let D1 and D2 be triangulated categories with t-structures (D≤0
i ,D≥0

i ), and let
F : D1 → D2 be a triangulated functor. Then H0 ◦F : D1 → D♡

2 is cohomological, i.e. for any
distinguished triangle

X −→ Y −→ Z −→ X[1]

we have a long exact sequence

· · · −→ H−1(F (Z)) −→ H0(F (X)) −→ H0(F (Y )) −→ H0(F (Z)) −→ H1(F (X)) −→ · · ·

Proof. Since F is triangulated, the triangle

F (X) −→ F (Y ) −→ F (Z) −→ F (X)[1]

is distinguished. Applying H0 and using Theorem 5.33 gives the result since Hn = H0 ◦[n] and
since we have the natural isomorphism F ◦ [1] ∼= [1] ◦ F . ■
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5.6 t-Exactness & Gluing t-Structures
We have a suitable notion of functors of triangulated categories, namely that of a triangulated
functor (Definition 3.9). However, such a functor may not preserve a given t-structure, so it is
necessary to introduce the following terminology:

Definition 5.35. Let D1 and D2 be triangulated categories with t-structures (D≤0
i ,D≥0

i ). A
triangulated functor F : D1 → D2 is left (resp. right) t-exact if F (D≥0

1 ) ⊆ D≥0
2 (resp. F (D≤0

1 ) ⊆
D≤0

2 ). A triangulated functor is t-exact if it both left and right t-exact.

For any triangulated functor D1 → D2, we can build a functor D♡
1 → D

♡
2 using cohomology

as follows:

Definition 5.36. Let D1 and D2 be triangulated categories with t-structures (D≤0
i ,D≥0

i ), and
let F : D1 → D2 be a triangulated functor. Then we define

pF : D♡
1 → D

♡
2 ,

pF := H0 ◦F ◦ ι

where ι : D♡
1 → D1 is the inclusion.

Remark 5.37. Note that Corollary 5.34, together with Corollary 5.27, states that for any exact
sequence

0 −→ X −→ Y −→ Z −→ 0,

in D♡
1 , applying pF (specifically, to the induced distinguished trianglei in D1) gives us a long

exact sequence

· · · −→ H−1(F (Z)) −→ pF (X) −→ pF (Y ) −→ pF (Z) −→ H1(F (X)) −→ · · ·

in D♡
2 .

In general, one does not know too much about pF , but when in addition F has some t-
exactness condition it is possible to deduce some more properties.

Lemma 5.38. Let D1 and D2 be as above, and let F : D1 → D2 be a left (resp. right) t-exact
functor. Then for all n ∈ Z, we have that F (D≥n

1 ) ⊆ D≥n
2 (resp. F (D≤n

1 ) ⊆ D≤n
2 ).

Proof. We prove this for the case when F is right t-exact, since the left t-exact case is dual. We
have that D≤n

1 = D≤0
1 [−n]. Since F is triangulated and right t-exact, we have that

F (D≤n
1 ) = F (D≤0

1 [−n]) = F (D≤0
1 )[−n] ⊆ D≤0

2 [−n] = D≤n
2

as desired. ■

Proposition 5.39. Let D1 and D2 be as above, and let F : D1 → D2 be a left (resp. right)
t-exact functor. Then

(i) for all X ∈ D≥0
1 (resp. D≤0

1 ), we have H0(F (X)) ∼= pF (H0(X)), and

(ii) pF is a left (resp. right) exact functor.

Proof. We consider the case when F is right t-exact, since the other case follows by a dual
argument.

We begin with (i). Take X ∈ D≤0
1 , and note that since τ≤0X ∼= X, we have that H0(X) ∼=

τ≥0X. Therefore, we have a distinguished triangle

τ≤−1X −→ X −→ H0(X) −→ (τ≤−1X)[1].
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Since F is right t-exact we have that F (τ≤−1X) ∈ D≤−1
2 so that Proposition 5.26 lets us

compute H0(F (τ≤−1X)) ∼= H1(F (τ≤−1X)) = 0, which means that Corollary 5.34 gives us an
exact sequence

0 −→ H0(F (X)) −→ H0(F (H0(X))) −→ 0

so that H0(F (X)) ∼= pF (H0(X)).
To prove (ii), consider an exact sequence

0 −→ X −→ Y −→ Z −→ 0

in D♡
1 . As in Remark 5.37, Corollary 5.34 then produces the long exact sequence

· · · −→ H−1(F (Z)) −→ pF (X) −→ pF (Y ) −→ pF (Z) −→ H1(F (X)) −→ · · ·

and since F is right t-exact and X,Y, Z ∈ D♡
1 = D≤0

1 ∩ D≥0
1 , we see that F (X) ∈ D≤0

2 . Using
Proposition 5.26, we get that H1(F (X)) = 0, so we can then reduce the above long exact
sequence to

pF (X) −→ pF (Y ) −→ pF (Z) −→ 0.

This proves the result. ■

Corollary 5.40. Let D1, D2, and F : D1 → D2 be as above. If F is t-exact, then F (D♡
1 ) ⊆ D♡

2 ,
pF is exact, we have a natural isomorphism F |D♡

1
∼= pF , and

F (Hn(X)) = Hn(F (X))

for all X ∈ D1.

Given that we now have a notion of compatibility for functors between triangulated categories
with t-structures, we can begin to discuss the topic of gluing t-structures. Here, we essentially
follow the outline from [GM03, p. 286, Ex. IV.4.2].

Definition 5.41. A Verdier quotient sequence

C D EP Q

where C, D, and E have t-structures is compatible if P and Q are t-exact.

We then make the following observation:

Proposition 5.42. Consider a compatible Verdier quotient sequence

C D E .P Q

Then

P (C≤0) = D≤0 ∩ P (C), E≤0 = Q(D≤0),
P (C≥0) = D≥0 ∩ P (C), E≥0 = Q(D≥0).

Proof. That P (C≤0) ⊆ D≤0∩P (C) is obvious since P is t-exact. Conversely, let X ∈ D≤0∩P (C),
and say X ∼= P (X0). We observe that P (τ≤0X0) ∈ D≤0 and P (τ≥1X0) ∈ D≥1 by t-exactness,
and that we have the distinguished triangle

τ≤0X0 X0 τ≥1X0 (τ≤0X0)[1]

94



5.6 t-Exactness & Gluing t-Structures 5 t-Structures

in C. Applying P to the this yields a distinguished triangle where the left entry is in D≥0,
the right entry is in D≥1, and the middle is P (X0) ∼= X. However, we already have one such
distinguished triangle, namely

τ≤0X X 0 (τ≤0X)[1]∼

so by uniqueness of truncation, we see that P (τ≥1X0) = 0 which tells us that X0 ∈ C≤0. The
proof that P (C≥0) = D≥0 ∩ P (C) is identical.

For the other half of the proposition, it is similarly clear that Q(D≤0) ⊆ E≤0 since Q is
t-exact. Conversely, let X1 ∈ E≤0. Since Q is essentially surjective, we can find some X ∈ D
such that Q(X) ∼= X1. We then have the distinguished triangle

τ≤0X X τ≥1X (τ≤0X)[1]

where we note that Q(τ≤0X) ∈ E≤0 and Q(τ≥1X) ∈ E≥1 by t-exactness. Thus, applying Q
to this distinguished triangle yields a distinguished triangle where the left entry is in E≤0, the
right entry is in E≥1, and the middle is Q(X) ∼= X1. Like before, we already know of one such
distinguished triangle, namely

τ≤0X1 X1 0 (τ≤0X1)[1]∼

which by uniqueness of truncation implies that X1 ∼= τ≤0X1 ∼= Q(Xτ≤0X). Therefore, X1 ∈
Q(D≤0), so E≤0 = Q(D≤0). The proof that E≥0 = Q(D≥0) is identical. ■

That is, in a compatible Verdier quotient sequence

C ↪→ D ↠ E

the t-structures on C and E are uniquely determined by the t-structure on D. We also have the
following:

Proposition 5.43. Consider a compatible Verdier quotient sequence

C D E .P Q

Then

D≤0 = {X ∈ ⊥P (C≥1) | Q(X) ∈ E≤0}, and
D≥0 = {X ∈ P (C≤−1)⊥ | Q(X) ∈ E≥0}.

To prove this, we first need a lemma.

Lemma 5.44. Consider a compatible Verdier quotient sequence

C D E .P Q

Then for any Y ∈ D, we have Q(Y ) ∈ E≤0 (resp. Q(Y ) ∈ E≥0) if and only if τ≥1Y ∈ P (C≥1)
(resp. τ≤−1Y ∈ P (C≤−1)).

Proof. The sufficiency of the latter condition is clear. For the other direction, we have the
distinguished triangle
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τ≤0Y Y τ≥1Y (τ≤0Y )[1]

which is mapped to the distinguished triangle

τ≤0Q(Y ) Q(Y ) 0 (τ≤0Q(Y ))[1]

in E by Q. Therefore, Q(τ≥1Y ) = 0, so

τ≥1Y ∈ D≥1 ∩ kerQ = D≥1 ∩ P (C) = P (C≥1)

which completes the proof after recognizing that the other assertion is dual. ■

With the above lemma in place, we can move on to a proof of the proposition.

Proof of Proposition 5.43. Let X ∈ D≤0. Is is then clear that HomD(X,P (Y0)) = 0 for all
Y0 ∈ C≥1 since P (C≥1) ⊆ D≥1. Similarly, Q(X) ∈ E≤0 since Q(D≤0) = E≤0. This shows one
of the desired inclusions. Conversely, suppose X ∈ D satisfies X ∈ ⊥P (C≥1) and Q(X) ∈ E≤0.
By Lemma 5.44, the latter condition implies that τ≥1X ∈ P (C≥1). Therefore, we observe that
HomD(X, τ≥1X) = 0, which by Lemma 5.17 implies that X ∈ D≤0. This shows that

D≤0 = {X ∈ ⊥P (C≥1) | Q(X) ∈ E≤0}

as desired. The other half of the proposition is dual. ■

The point of the above two propositions is to say that if we are given a compatible Verdier
quotient sequence

C ↪→ D ↠ E

then we can totally recover the t-structures on C and E from the one on D, and similarly, we can
totally recover the t-structure on D from the ones on C and E . A notable issue this has, however,
is that it assumes a priori that there are t-structures on all the involved triangulated categories,
and furthermore that we have this compatibility condition of the functors being t-exact.

A way of interpreting the above statements is to say that in such a compatible Verdier
quotient sequence, the t-structure on D is necessarily “glued together” from the ones on C and
E . The limitation is that if we do not know from the start that there exists a t-structure on
D, we cannot actually conclude anything at all in general. This is to be expected: if we drop
the t-structure on D, then we also drop the compatibility condition, and therefore we have no
guarantee that the t-structures on C and E interact well with each other.

A way to produce a situation where we can always “glue” t-structures is to ensure that the
Verdier quotient sequence is actually doing some gluing, i.e. that it is a recollement. See Section
3.5 for details about those. We then have

Theorem 5.45. Suppose there is a recollement

C D E .P Q

LP

RP RQ

LQ

and suppose that C and E have t-structures on them. Then there exists a t-structure on D such
that the above Verdier quotient sequence is compatible. Furthermore, the t-structure is given by

D≤0 = {X ∈ ⊥P (C≥1) | Q(X) ∈ E≤0}, and
D≥0 = {X ∈ P (C≤−1)⊥ | Q(X) ∈ E≥0}.
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Before we prove this, we collect some lemmas regarding the situation in the theorem.

Lemma 5.46. With the hypotheses of Theorem 5.45, we have

LP (D≤0) = C≤0, RP (D≥0) = C≥0,

and
P (C≤0) ⊆ D≤0, P (C≥0) ⊆ D≥0.

Proof. The last part of the lemma is very easy: if X ′ ∈ C≤0, then Q(P (X ′)) = 0 ∈ E≤0 and for
all Y ′ ∈ C≥1 we have

HomD(P (X ′), P (Y ′)) ∼= HomC(X ′, Y ′) = 0

so P (X ′) ∈ D≤0. The other argument is dual. With that taken care of, we do the first part.
Let X ∈ D≤0. Then, for any Y ′ ∈ C≥1, we have

HomC(LP (X), Y ′) ∼= HomD(X,P (Y ′)) = 0

since X ∈⊥ P (C≥1), so LP (X) ∈ C≤0. Therefore, LP (D≤0) ⊆ C≤0. Next, if X ′ ∈ C≤0,
then since P is fully faithful we have LP (P (X ′)) ∼= X ′. Furthermore, P (X ′) ∈ D≤0 since
Q(P (X ′)) = 0 ∈ E≤0 and if Y ∈ P (C≥1) (i.e. Y ∼= P (Y ′), with Y ′ ∈ C≥1) then

HomD(P (X ′), Y ) ∼= HomD(P (X ′), P (Y ′)) ∼= HomC(X ′, Y ′) = 0

since Y ′ ∈ C≥1. Therefore, C≤0 ⊆ LP (D≤0), and so we have C≤0 = LP (D≤0).
An identical but dual argument shows that RP (D≥0) = C≥0. ■

Lemma 5.47. With the hypotheses of Theorem 5.45, we have

LQ(E≤0) ⊆ D≤0, RQ(E≥0) ⊆ D≥0,

and
Q(D≤0) = E≤0, Q(D≥0) = E≥0.

Proof. If X ′′ ∈ E≤0, then Q(LQ(X ′′)) ∼= X ′′ and for all Y ′ ∈ C≥1 we have

HomD(LQ(X ′′), P (Y ′)) ∼= HomE(X ′′, Q(P (Y ′))) = 0

so LQ(X ′′) ∈ D≤0. Therefore, LQ(E≤0) ⊆ D≤0.
The second part follows by the observation that trivially Q(D≤0) ⊆ E≤0 by the definition of

D≤0, and the restrictions LQ|E≤0 and Q|D≤0 are adjoint to each other. Since the restriction of
LQ is fully faithful, the restriction of Q is essentially surjective. ■

The above two lemmas, and essentially all the information about the situation, can be
summarized in the following picture:

C≤0 D≤0 E≤0

C D E

C≥0 D≥0 E≥0

τ≥0

τ≤0

P Q

LP

RP

τ≤0

τ≥0RQ

LQ
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Take note that this does not commute.
Finally, we have one more easy lemma which will be helpful as a slightly different character-

ization of the prospective t-structure on D.

Lemma 5.48. Suppose we are in the situation of Theorem 5.45. Then we have equalities

D≤0 = {X ∈ D | LP (X) ∈ C≤0, Q(X) ∈ E≤0}, and
D≥0 = {X ∈ D | RP (X) ∈ C≥0, Q(X) ∈ E≥0}.

Proof. Let D′ = {X ∈ D | LP (X) ∈ C≤0, Q(X) ∈ D≤0}. If X ∈ D≤0, then by definition
Q(X) ∈ E≤0. Furthermore, we see that LP (X) ∈ C≤0 by Lemma 5.46. Therefore, D≤0 ⊆ D′.
Conversely, let X ∈ D′. Again, trivially Q(X) ∈ E≤0. Now, let Z ∈ C≥1. Then

HomD(X,P (Z)) ∼= HomC(LP (X), Z) = 0

since LP (X) ∈ C≤0. Therefore, X ∈ ⊥
P (C≥1). This proves that D′ ⊆ D≤0, so D′ = D≤0. Thus

we have proved one equality. The other one follows similarly. ■

With this work out of the way, we may prove the theorem.

Proof of Theorem 5.45. We begin with (T2). Let X ∈ D≤0. Then we see that

LP (X[1]) ∼= LP (X)[1] ∈ C≤−1 ⊆ C≤0

and
Q(X[1]) ∼= Q(X)[1] ∈ E≤−1 ⊆ C≤0

so X[1] ∈ C≤0. An identical calculation shows that Y [−1] ∈ D≥0 for all Y ∈ D≥0.
Now we show (T1). Suppose X ∈ D≤0 and Y ∈ D≥0. By Corollary 3.89, we have a

distinguished triangle

LQ(Q(X)) −→ X −→ P (LP (X)) −→ LQ(Q(X))[1].

Applying HomD(−, Y [−1]) to this, we obtain the exact sequence

HomD(P (LP (X)), Y [−1]) −→ HomD(X,Y [−1]) −→ HomD(LQ(Q(X)), Y [−1]).

We then use that LQ is left adjoint to Q and P is left adjoint to RP to rewrite this as

HomC(LP (X), RP (Y )[−1]) −→ HomD(X,Y [−1]) −→ HomE(Q(X), Q(Y )[−1]).

By Lemma 5.48, the first and last terms are zero. Therefore, HomD(X,Y [−1]) = 0.
Finally, we show (T3). Here we follow [BBDG18, Thm. 1.4.10]. Let X ∈ D. Applying Q,

truncating, and then apply RQ, we have a distinguished triangle

RQ(τ≤0Q(X)) −→ RQ(Q(X)) −→ RQ(τ≥1Q(X)) −→ RQ(τ≤0Q(X))[1].

We compose the maps X → RQ(Q(X))→ RQ(τ≥1Q(X)) to obtain a map X → RQ(τ≥1Q(X)).
Taking the cocone of this map, we have a distinguished triangle

X ′ −→ X −→ RQ(τ≥1Q(X)) −→ X ′[1].

Similarly we produce a map X ′ → P (τ≥1LP (X ′)) and a distinguished triangle

A −→ X ′ −→ P (τ≥1LP (X ′)) −→ A[1].

We now apply (TR4) to the composition A→ X ′ → X. This produces the diagram
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A X ′ P (τ≥1LP (X ′)) A[1]

A X B A[1]

X ′ X RQ(τ≥1Q(X)) X ′[1]

P (τ≥1LP (X)) B RQ(τ≥1Q(X)) P (τ≥1LP (X))[1]

and we may now obtain useful information by applying the functors available to us to these
distinguished triangles. In particular, applying Q to the bottom triangle gives

0 −→ Q(B) ∼−→ τ≥1Q(X) −→ 0.

Applying RP to the same triangle and using that kerRP = imRQ gives

τ≥1LP (X ′) ∼−→ RP (B) −→ 0 −→ τ≥1LP (X ′)[1].

This implies, by Lemma 5.48, that B ∈ D≥1. Similarly, applying LP to the first row of the
diagram gives

LP (A) −→ LP (X ′) −→ τ≥1LP (X ′) −→ LP (A)[1]
so by uniqueness of truncation LP (A) ∼= τ≤0LP (X ′). Applying Q to the second row of the
diagram and using that Q(B) ∼= τ≥1Q(X) gives

Q(A) −→ Q(X) −→ τ≥1Q(X) −→ Q(A)[1]

so, again by uniqueness of truncation, we have Q(A) ∼= τ≤0Q(X). This shows, by Lemma 5.48,
that A ∈ D≤0. Thus, the distinguished triangle

A −→ X −→ B −→ A[1]

is the desired triangle. ■

Example 5.49. We can try applying Theorem 5.45. Consider any recollement

C D E .P Q

LP

RP RQ

LQ

Recall then from Example 5.4 that on C and E there exist various trivial t-structures. One can
ask what happens when we glue them. Let t1(T ) = (T , 0), t2(T ) = (0, T ) for T = C,D, E .
We then see that gluing t1(C) and t1(E) produces the t-structure t1(D) on D, and similarly for
gluing t2(C) and t2(E). Thus, these two choices do not give particularly interesting results. On
the other hand, the remaining two possibilities do: if we glue t1(C) with t2(E), then we get the
t-structure

D≤0
1,2 = {X ∈ D | LP (X) ∈ C, Q(X) ∈ 0}

= {X ∈ D | Q(X) = 0} = P (C),
D≥0

1,2 = {X ∈ D | RP (X) ∈ 0, Q(X) ∈ E}
= {X ∈ D | RP (X) = 0} = P (C)⊥.
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This gives another proof that ⊥(P (C)⊥) = P (C) when we have a recollement. In particular,
P (C)⊥[−1] = P (C)⊥, and thus Corollary 5.14 says that

P (C) = D≤0
1,2 = ⊥(D≥1

1,2) = ⊥(P (C)⊥).

Similarly, we may glue t2(C) with t2(E) to get the t-structure

D≤0
2,1 = kerLP = ⊥P (C),
D≥0

2,1 = kerQ = P (C).

Essentially the same computation as before then gives an alternative proof that (⊥P (C))⊥ =
P (C).

Example 5.50. Suppose we have a recollement as above. In general, given a t-structure
(T ≤0, T ≥0) on a triangulated category T , one obtains t-structures (T ≤n, T ≥n) for and n ∈ Z.
We can use this fact to produce some t-structures on D given t-structures on C and E . In par-
ticular, if the latter have t-structures, then for any two pairs of integers n1, n2, we can produce
the t-structure

D≤0
n1,n2 = {X ∈ D | LP (X) ∈ C≤n1 , Q(X) ∈ E≤n2},
D≥0
n1,n2 = {X ∈ D | RP (X) ∈ C≥n1 , Q(X) ∈ E≥n2}.

For example, one then has X ∈ D≤0
n1,n2 if when one projects X onto C, it is concentrated in

degree ≤ n1, and when one projects X onto E , it is concentrated in degree ≤ n2.

5.7 Notes on Enhancements
In Section 3.6, we briefly discussed the benefits of using enhancements of triangulated categories,
and in particular emphasized stable ∞-categories as a good example. As observed there, there
are certain differences between triangulated categories and stable ∞-categories which make the
latter significantly nicer in some respects (though perhaps more cumbersome to work with in
others). Since t-structures are of general interest, there is an immediate question of how one
applies them to the framework of a stable ∞-category.

As it turns out, somewhat remarkably, the correct notion of t-structure on a stable ∞-
category is exactly a t-structure on a triangulated category. Specifically, if we have a stable
∞-category C, then its homotopy category h(C) is a triangulated category, and a t-structure on
C is exactly the same as a t-structure on h(C). The reason for this is explained very well in
the MathOverflow answer [Tan14]. A t-structure on D = h(C) consists of two full subcategories
(D≤0,D≥0) such that

(a) D≤0 is stable under shifting to the left, and D≥0 is stable under shifting to the right,

(b) there is a certain distinguished triangle putting any object of D between one in D≤0 and
one in D≥1, and

(c) there is an orthogonality condition that

HomD(D≤0,D≥1) = 0.

Changing all the appropriate words, one sees that a t-structure on C is a pair of full subcategories
(C≤0, C≥0) such that
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(A) the subcategories are stable under some shifting (which is a built in operation in stable
∞-categories),

(B) there is a fiber sequence putting any object of C between one in C≤0 and one in C≥1, and

(C) there is an orthogonality condition that HomC(C≤0, C≥1) is contractible.

It is then not too difficult to sketch an argument for why these two collections of data are
equivalent, given sufficient knowledge of stable∞-categories. If one actually checks the relevant
definitions in [Lur17], it is fairly clear why (b) and (B) are equivalent, for example.
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6 t-Structures From Silting Objects
In Section 5, we explored the theory of t-structures on triangulated categories. We saw a few
different kinds of examples, including some simple ways to build t-structures on an ambient
triangulated category obtained by gluing. However, the only non-trivial “explicit” example
we saw was the standard t-structure on D(A). This section is dedicated to producing a class
of particularly nice examples of t-structures on triangulated categories which have a compact
silting object. In terms of source material, this section is very heavily based on the currently
unpublished notes of my advisor, Gustavo Jasso, on dg-categories [Jas21].

We begin with a motivating example.

6.1 Motivation
Fix a ring R. We can associate to this an Abelian category ModR, consisting of (right) modules
over R. Using the machinery of Section 4, we then produce a triangulated category D(R) :=
D(ModR), which by the discussion at the start of Section 5 has a standard t-structure on it.
This t-structure has the property that we may express it directly using the vanishing of certain
cohomology functors (which is not true of all t-structures). Specifically, the t-structure on D(R)
is given by

D(R)≤0 = {M• ∈ D(R) | ∀i > 0, Hi(M•) = 0},
D(R)≥0 = {M• ∈ D(R) | ∀i < 0, Hi(M•) = 0}.

Being able to state the t-structure on D(R) in terms of its cohomology functors is already
rather nice, but there is an additional phenomenon in this category which will be the main
motivation for this section. It is the fact that we may express the cohomology functors using
Hom-functors, and thus use Hom in order to detect whether something is in the aisle/coaisle.

In all the categories C(ModR), K(ModR), and D(R), we have a notable specific object of
interest, namely R itself—or more precisely, the complex with R concentrated in degree zero.
We begin with the following result:

Proposition 6.1. There is a natural isomorphism

HomK(ModR)(R,M•) ∼−→ H0(M•), f 7→ [f(1)] ∈ H0(M•)

for all M• ∈ K(ModR).

Proof sketch. First, note that we have

HomC(ModR)(R,M•) = {f : R→M• | d0
M ◦ f = 0} ∼= ker d0

simply via the map f 7→ f(1). Now we notice that

f ∼h 0 ⇐⇒ ∃η : R→M−1 s.t d−1
M ◦ η = f

⇐⇒ f(1) ∈ im d−1
M

and therefore we get

HomK(ModR)(R,M•) = HomC(ModR)(R,M•)/ ∼h
∼−→ ker(d0

M )/ im(d−1
M ) = H0(M•)

as desired. □

The above result applies to K(ModR), but we want it for D(R).
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Proposition 6.2. There is a natural isomorphism

HomD(R)(R,−) ∼−→ H0(−).

Proof sketch. The strategy is to use that we know the result for K(ModR). In particular, one
constructs a subcategory of K(ModR) which is equivalent to D(R), and then uses the result
for K(ModR).

The subcategory of K(ModR) which is of interest to us is the full subcategory

KProjR := {X• ∈ K(ModR) | ∀A• acyclic, HomK(ModR)(X•, A•) = 0}

where we recall that A• is acyclic if Hi(A•) = 0 for all i ∈ Z. Note that R ∈ KProjR. The
composition

KProjR → K(ModR)→ D(R)

is an equivalence (see [Kra07, 5.1 & 5.2]) with quasi-inverse p : D(R) ∼−→ KProjR, and thus for
any X• ∈ D(R) we can compute

HomD(R)(R,X•) ∼= HomKProjR(R, p(X•)) ∼= HomK(ModR)(R, p(X•)) ∼= H0(p(X•)) ∼= H0(X•)

where we note that we have Hn(X•) ∼= Hn(p(X•)). □

So we can represent the cohomology functors in D(R) as a Hom-functor (in particular, we
note that this says H0(−) is corepresentable). This gives us the following neat description of the
t-structure on D(R):

D(R)≤0 = {M• ∈ D(R) | ∀i > 0, HomD(R)(R,M [i]•) = 0},
D(R)≥0 = {M• ∈ D(R) | ∀i < 0, HomD(R)(R,M [i]•) = 0}.

The question which we now try to lead with is as follows: if we can “detect” the aisle/coisle
in D(R) using Hom(R,−), can we in a more general triangulated category define a t-structure
from being “detectable” by some fixed object? An answer to this will not come immediately,
but appears in Section 6.4, and in particular in Theorem 6.21.

6.2 Compact Objects
There are several notions we will need to develop before we can prove the promised Theorem
6.21. The first of these is that of compact objects in a triangulated category.

Definition 6.3. Let D be a triangulated category. An object G ∈ D is called compact if, for
every set-indexed collection of objects {Yi}i∈I , the morphism of Abelian groups∐

i∈I
HomD(G, Yi)→ HomD(G,

∐
i∈I

Yi),

induced by the morphisms HomD(G, Yi) → Hom(G,∐i∈I Yi) obtained by composing with the
inclusion Yi ↪→

∐
i∈I Yi, is an isomorphism.

Remark 6.4. Let ιi : Yi →
∐
i∈I Yi be the canonical inclusion. Note that the above map is given

explicitly by
(fi)i∈I 7→

∑
i∈I

ιi ◦ fi.

103



6.2 Compact Objects 6 t-Structures From Silting Objects

Remark 6.5. Why is this a property worthy of being called “compact”? Usually, compactness
refers to a kind of “finiteness” property whereby one can take an infinite set and extract from it
a finite set which is sufficient to get the same information. This is actually what is happening
here too: to say that G ∈ D is compact is to say that for any morphism G →

∐
i∈I Yi, there

exists some unique finite subset I0 ⊆ I and a unique factorization

G
∐
i∈I Yi.

⊕
i∈I0 Yi

∃!

This is simply observed by knowing what coproducts in the category Ab of Abelian groups are.
Thus, this property of being a compact object is indeed a “compactness” property.

Example 6.6. Let R be a ring. Then R is a compact object in KProjR. We sketch an argument
for this. Our strategy is to explicitly produce an inverse to the map∐

i∈I
HomKProjR(R,X•

i ) −→ HomKProjR(R,
∐
i∈I

X•
i ).

Consider some map f : R→ ∐
i∈I X

•
i . This consists of a single map f0 : R→ ∐

i∈I X
0
i , which is

determined by f0(1) = (xi)i∈I ; in particular f0
i (r) = xir. Note at this point that almost all of

the xi are zero, so almost all of the component maps fi are zero, and so we have a well-defined
map

HomKProjR(R,
∐
i∈I

X•
i ) −→

∐
i∈I

HomKProjR(R,X•
i )

given by f 7→ (fi)i∈I . This is the desired inverse.

In the above definition, we require that a certain map is an isomorphism. Actually, this is
slightly unnecessary: the map is always an injection (by the following result), and thus it suffices
to impose surjectivity to be compact.

Proposition 6.7. Let D be an additive category, and let X ∈ D. Unconditionally, for any
set-indexed collection {Yi}i∈I , the map∐

i∈I
HomD(X,Yi)→ HomD(X,

∐
i∈I

Yi)

is injective.

Proof. Let ιj : Yj →
∐
i∈I Yi be the canonical inclusion to the jth component. Let πj : ∐i∈I Yi →

Yj be the map defined on components by 0: Yk → Yj if k ̸= j and idYj if k = j, i.e. defined by

πk ◦ ιj = 0 if k ̸= j, and πk ◦ ιj = idYj if k = j.

We will exhibit the map

ϕ :
∐
i∈I

HomD(X,Yi)→ HomD(X,
∐
i∈I

Yi), (fi)i∈I 7→
∑
i∈I

ιi ◦ fi

as being part of a decomposition of the canonical monomorphism

ι :
∐
i∈I

HomD(X,Yi) ↪→
∏
i∈I

HomD(X,Yi).
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Define a map
ψ : HomD(X,

∐
i∈I

Yi)→
∏
i∈I

HomD(X,Yi)

on components by the maps

ψj : HomD(X,
∐
i∈I

Yi)→ HomD(X,Yj), ϕj(f) = πj ◦ f.

That is,
ψ(f) = (πi ◦ f)i∈I .

Then, for any (fj)j∈I ∈
∐
i∈I HomD(X,Yi),

(ψ ◦ ϕ)((fj)j∈I) = ψ

∑
j∈I

ιj ◦ fj

 =

∑
j∈I

πi ◦ ιj ◦ fj


i∈I

= (ιi ◦ fi)i∈I = ι((fi)i∈I)

so that ι = ψ ◦ ϕ. Since ι is a monomorphism, this implies that ϕ is a monomorphism, i.e. is
injective. ■

Definition 6.8. Let D be a triangulated category admitting small coproducts. We say a class
of objects U in D generates D if whenever X ∈ D satisfies HomD(U [i], X) = 0 for all U ∈ U and
all i ∈ Z we have X = 0.

Definition 6.9. Let D be a triangulated category. We say D is compactly generated if there is
a set G of compact objects of D such that G generates D.

The reason we are interested in these notions is because we will later, in the process of
proving Theorem 6.21, want to apply the following proposition.

Proposition 6.10. Let D be a triangulated category admitting small coproducts, and suppose
D is generated by some set of objects U in D. Consider a distinguished triangle

X
f−→ Y → Z → X[1]

in D, and suppose that for all U ∈ U the induced morphisms

f∗ : HomD(U,X)→ HomD(U, Y ), ϕ 7→ f ◦ ϕ

are isomorphisms.

(i) If U [1] ⊆ U , then for all U ∈ U and i > 0 we have

HomD(U [i], Z) = 0.

(ii) If U [1] = U , then Z = 0 and f is an isomorphism.

Proof. (i) Let U ∈ U , i > 0, and let g : Y → Z and h : Z → X[1] be the morphisms in the
distinguished triangle above. By applying Hom(U [i],−), we get the exact sequence

Hom(U [i], X) f∗−→ Hom(U [i], Y ) g∗−→ Hom(U [i], Z) h∗−→ Hom(U [i], X[1]) f [1]∗−−−→ Hom(U [i], Y [1]).

By assumption, f∗ is an isomorphism, and furthermore, since f [1]∗ lies in the commutative
square
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Hom(U [i], X[1]) Hom(U [i], Y [1])

Hom(U [i− 1], X) Hom(U [i− 1], Y )

f [1]∗

∼ ∼

f∗

we see that f [1]∗ is also an isomorphism. Therefore, the exactness of the above diagram says
that im h∗ = ker f [1]∗ = 0, so kerh∗ = Hom(U [i], Z) and hence im g∗ = kerh∗ = Hom(U [i], Z),
i.e. g∗ is surjective. We then see that Hom(U [i], Z) ∼= coker f∗, and since f∗ is an isomorphism
this is zero.

(ii) Running the above argument with i arbitrary gives that
HomD(U [i], Z) = 0 for all U ∈ U , i ∈ Z

and hence, since U generates D, we have Z = 0. By Lemma 3.18, this implies f is an isomor-
phism. ■

Remark 6.11. Note that the requirement U [1] = U is equivalent to U [1] ⊆ U and U [−1] ⊆ U .
Indeed, U [−1] ⊆ U ⇐⇒ U ⊆ U [1] and so the latter condition says exactly that U [1] ⊆ U and
U ⊆ U [1], i.e. U [1] = U .

6.3 Homotopy Colimits
Category theory allows us to define colimits, and in particular, colimits defined up to some
canonical choice of isomorphism. An issue which arises in certain contexts is that we might
want colimits which are more “loosely” defined, for example only up to some notion of homotopy.
This problem is quite difficult to solve, and in some sense one has only fairly recently gotten
closer to solving it through the various approaches to (∞, 1)-categories. In the more elementary
setting of triangulated categories, however, one can give a reasonably simple way to define at
least certain homotopy colimits by interpreting distinguished triangles as “exact sequences up
to homotopy.”

Consider a category C and a sequence of morphisms

X0 X1 X2 · · · Xn · · ·f0 f1 f2 fn

in C. The colimit of this is an object X ∈ C equipped with maps gi : Xi → X for all i ≥ 0 such
that gi = gi+1 ◦ fi, and on top of this, X is the best possible such choice in the sense that if X ′

is any other object equipped with hi : Xi → X ′ such that hi = hi+1 ◦ fi, then there is a map
h : X → X ′ such that hi = h ◦ gi. One can combine this into the statement that∐∞

i=0Xi
∐∞
i=0Xi X 01−φ (gi)

is exact, where (gi) is the morphism induced by the gi : Xi → X, and φ is a morphism defined
on components by

φij =
{
fj : Xj → Xj+1 if i = j + 1,
0 otherwise.

In other words, 1− φ is given by the matrix

1− φ =



1 0 0 0 · · ·
−f0 1 0 0 · · ·

0 −f1 1 0 · · ·

0 0 −f2 1 . . .
...

...
... . . . . . .
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To see this, note that the relation (gi) ◦ (1− φ) = 0 says exactly that

(
g0 g1 g2 g3 · · ·

)


1 0 0 0 · · ·
−f0 1 0 0 · · ·

0 −f1 1 0 · · ·

0 0 −f2 1 . . .
...

...
... . . . . . .


=
(
g0 − g1 ◦ f0 g1 − g2 ◦ f1 · · ·

)
= 0

so that gi = gi+1 ◦ fi. The universality is then the fact that X is the cokernel of 1− φ via (gi).
In particular, if we have an additional object X ′ with a map (hi) : ∐∞

i=0Xi → X ′ such that
(hi) ◦ (1 − φ) = 0, i.e. hi = hi+1 ◦ fi, then exactness says precisely that this induces a unique
morphism h : X → X ′ such that h ◦ (gi) = (hi), i.e. such that h ◦ gi = hi.

If we now replace the exact sequence with an “exact sequence up to homotopy” (see also
Proposition 3.20), that is distinguished triangles, then we get the definition of a homotopy
colimit.

Definition 6.12. Let D be a triangulated category admitting countable coproducts, and con-
sider a sequence of morphisms

X0 → X1 → X2 → · · · → Xn → · · ·

as above. A homotopy colimit of this sequence is an object X together with a distinguished
triangle

∐∞
i=0Xi

∐∞
i=0Xi X (∐∞

i=0Xi) [1].1−φ

We then write hocolimiXi for any such choice of X and call it “the” homotopy colimit.

Remark 6.13. Of course, as usual in a triangulated category, the homotopy colimit is in no sense
uniquely determined up to canonical isomorphism (except perhaps in exceptional circumstances).
Nonetheless, just as it is useful to have notation for “the” cone of a morphism in a triangulated
category, it is useful to have notation for “the” homotopy colimit as long as one remembers that
what property the object should satisfy.

Homotopy colimits interact well with compact objects. In the context of triangulated cate-
gories, one defines compact objects as those whose covariant Hom-functor preserves coproducts,
but in more general situations, one requires that the Hom-functor preserves all filtered colimits.
If we are to believe that the homotopy colimit behaves like a colimit, then we should also ex-
pect compact objects to preserve them in a suitable sense. This is the content of the following
proposition.

Proposition 6.14. Let D be a triangulated category admitting countable coproducts, and con-
sider a sequence

X0 → X1 → X2 → · · · → Xn → · · ·
in D. Pick a distinguished triangle

∐∞
i=0Xi

∐∞
i=0Xi hocolimiXi (∐∞

i=0Xi) [1]1−φ

defining a homotopy colimit of this sequence. Then, for any compact object G ∈ D, the canonical
map

lim−→
i

HomD(G,Xi)→ HomD(G,hocolimiXi)

is an isomorphism.
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Proof. The strategy here is quite similar to the proof of Proposition 6.10. We are given a
distinguished triangle involving hocolimiXi and we want to know about HomD(G,hocolimiXi),
so we begin by applying HomD(G,−) to get an exact sequence

Hom(G,
∐
i

Xi)
1−φ∗−−−→ Hom(G,

∐
i

Xi)→ Hom(G,hocolimiXi)→ Hom(G,
∐
i

Xi[1]) 1−φ[1]∗−−−−−→ · · ·

and the idea is now that 1− φ[1]∗ is injective. To see this, note that by compactness we have a
commutative diagram ∐

i HomD(G,Xi)
∐
i HomD(G,Xi)

HomD(G,∐iXi[1]) HomD(G,∐iXi[1])

∼ ∼

1−φ[1]∗

where the top horizontal morphism is injective since it is given by a lower triangular matrix. As
a result, 1− φ[1]∗ can be written as a composition of a number of injective maps, and hence is
injective. Thus, we have an exact sequence

HomD(G,∐iXi) HomD(G,∐iXi) HomD(G,hocolimiXi) 0.1−φ∗

Using essentially the same commutative square as above but without the shift, we obtain the
exact sequence∐

i HomD(G,Xi)
∐
i HomD(G,Xi) HomD(G,hocolimiXi) 01−φ∗

exhibiting the relation

lim−→
i

HomD(G,Xi) ∼−→ HomD(G,hocolimiXi)

as desired. ■

Remark 6.15. Take the notation from the above proposition, and let hij : Xi → Xj . It may
be useful to note that lim−→i

Hom(G,Xi) can be described as follows: an element is a pair (n, f),
where n ≥ 0 and f : G → Xn, modulo the equivalence relation (n, f) ∼ (m, g) if there is some
k ≥ max(n,m) such that hnk ◦f = hmk ◦g. The canonical map Hom(G,Xj)→ lim−→i

Hom(G,Xi)
is given by f 7→ (j, f), and the canonical map lim−→i

Hom(G,Xi) → Hom(G,hocolimiXi) is the
one induced by the maps Xi → hocolimiXi after applying Hom(G,−).

The reason we have built up this machinery of homotopy colimits at all is because it gives us
access to a convenient way of building certain distinguished triangles with controllable properties.
As an example of something one might want, suppose we have a triangulated category which
is generated by some objects. We might want to “approximate” an object in that in some way
by objects built in some elementary way from the generating objects. Homotopy colimits give a
method for doing this.

Specifically, if we are in the situation of a triangulated category with some generators, then
homotopy colimits give us a way to approximate any object of the triangulated category by a
sequence of objects obtained as extensions of coproducts of the generators, with the comparison
between the “real thing” and the “approximation” given by a morphism from the homotopy
colimit. Furthermore, when the generating objects are compact, this operation loses reasonably
little information. This is encapsulated in the following theorem.
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Theorem 6.16. Let D be a triangulated category admitting small coproducts which is generated
by some set G of (not necessarily compact!) objects, and let X ∈ D. Then there exists a sequence

X0 X1 X2 · · · Xn · · ·h0 h1 h2 hn

of objects of D, together with morphisms xi : Xi → X, such that

(a) X0 is the coproduct of some objects in G,

(b) for every i ≥ 0, there is an object Yi ∈ D, which is a coproduct of objects in G, and a
distinguished triangle

Yi → Xi → Xi+1 → Yi[1],

(c) for all i ≥ 0, xi = xi+1 ◦ hi,

(d) letting (pi) : ∐iXi → hocolimiXi be the morphism in the definition of the homotopy
colimit, there exists a morphism u : hocolimiXi → X such that (xi) = u ◦ (pi),

(e) for any G ∈ G, the induced morphism u∗ : HomD(G,hocolimiXi) → HomD(G,X) is
surjective, and

(f) if the objects of G are compact, so that D is compactly generated, then for all G ∈ G, the
induced morphism u∗ : HomD(G,hocolimiXi)→ HomD(G,X) is an isomorphism.

Proof. The proof essentially consists of two parts: constructing the desired sequence by induc-
tion, and showing that one has an isomorphism with the homotopy colimit.

The first part, construction, begins by constructing X0. Since we have small coproducts D,
we may construct the somewhat ridiculous coproduct

X0 :=
∐
G∈G

∐
f∈HomD(G,X)

G

and the tautological morphism x0 : X0 → X, given on the (G, f)th component by f : G → X
itself. This has the obvious property that for any G ∈ G, the map

x0,∗ : HomD(G,X0)→ HomD(G,X)

is surjective. In particular, if we have a map f : G→ X then this is, by definition of X0, given
by x0 ◦ ιG,f , where ιG,f : G→ X0 is the canonical inclusion to the (G, f)th component.

Suppose we have constructed Xi and xi : Xi → X for some i ≥ 0. To construct Yi, we
consider the coproduct

Yi :=
∐
G∈G

∐
f∈ker(xi,∗)

G

and the associated canonical map yi : Yi → Xi given on (G, f)th component by f : G → Xi.
This defines Yi and a map Yi → Xi.

Now we explain how, given Xi, Yi, and the map yi : Yi → Xi, one constructs the data for
the (i + 1)th step. We obtain Xi+1 as the cone of yi. In particular, we choose a distinguished
triangle

Yi Xi Xi+1 Yi[1].yi hi

From the definition of Yi and the map yi, we see that for any G ∈ G and f ∈ kerxi,∗, we have
that the diagram
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G

Yi Xi Xi+1 Yi[1]

X

f
ιG,f

yi

0

hi

xi

commutes since xi ◦ yi ◦ ιG,f = xi ◦ f = 0 (in turn because f ∈ kerxi,∗). Here, the particular
choice of G and f was arbitrary, so we see that xi ◦yi is zero on every component, i.e. xi ◦yi = 0.
Thus, by the weak cokernel property of the cone (see Proposition 3.20), there exists some (not
necessarily unique!) morphism xi+1 : Xi+1 → X such that

Yi Xi Xi+1 Yi[1]

X

yi

0

hi

xi
xi+1

commutes. This constructs Xi+1 and xi+1 as desired.
Thus, by induction, we produce a diagram

X0 X1 · · · Xn · · ·

X

h0

x0

h1

x1

hn

xn

such that properties (a), (b), and (c) of the theorem statement are satisfied.
To get a morphism as in (d), first choose a distinguished triangle

∐∞
i=0Xi

∐∞
i=0Xi hocolimiXi (∐∞

i=0Xi) [1].1−φ (pi)

Note then that (xi) ◦ (1−φ) = 0, since by definition we have xi = xi+1 ◦hi. Therefore, again by
the weak cokernel property of cones, we obtain a (non-unique!) morphism u : hocolimiXi → X
such that ∐

iXi
∐
iXi hocolimiXi (∐iXi) [1]

X

1−φ

0

(pi)

(xi)
u

commutes. We now prove (e), that for every G ∈ G the morphism

u∗ : Hom(G,hocolimiXi)→ Hom(G,X)

is surjective. By the definition of u, we see that, letting ι0 : X0 →
∐
iXi be the canonical

inclusion,
u ◦ p0 = u ◦ (pi) ◦ ι0 = (xi) ◦ ι0 = x0.

Applying HomD(G,−), this implies that the diagram

HomD(G,X0) HomD(G,hocolimiXi)

HomD(G,X)

p0,∗

x0,∗ u∗
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commutes. As observed earlier during the construction of X0, x0,∗ is surjective. Thus, since
x0,∗ = u∗ ◦ p0,∗, we see that u∗ is surjective. This proves (e)

Finally, to prove (f), suppose that the objects of G are compact. We will now prove that the
above map u∗ : Hom(G,hocolimiXi) → Hom(G,X) is injective. To this end, suppose that we
have some f ∈ HomD(G,hocolimiXi) such that u∗(f) = u ◦ f = 0. Since G ∈ G is compact,
Proposition 6.14 gives us that the canonical morphism

lim−→
i

Hom(G,Xi)→ Hom(G,hocolimiXi)

is an isomorphism. Taking the inverse image of f , we see that there is some n ≥ 0 and some
g : G → Xn such that f = pn ◦ g (see the end of Remark 6.15). We then have a commutative
diagram

Xn

G hocolimiXi

X

pn

xn
f

g

0

u

which displays that xn ◦ g = 0. Explicitly, we can compute

xn ◦ g = u ◦ pn ◦ g = u ◦ f = 0

so that g ∈ kerxn,∗. The last step is to plug this into the data from (b). In particular, we have
the commutative diagram

G

Yn Xn Xn+1 Yn[1]

hocolimiXi

ιG,g
g

yn hn

pn
pn+1

which allows us to compute

f = pn ◦ g = pn+1 ◦ (hn ◦ yn) ◦ ιG,g = pn+1 ◦ 0 ◦ ιG,g = 0

and we arrive at the conclusion that f = 0, so that u∗ is injective. ■

Here is a fun and immediate corollary.

Corollary 6.17. Let D be a compactly generated triangulated category, and let G be any gen-
erating set of compact objects. Then the smallest triangulated category in D closed under small
coproducts which contains G is D itself.

Proof. Apply Theorem 6.16 along with Proposition 6.10. In particular, replace G by the set

G′ := {G[i] | G ∈ G, i ∈ Z},

which we can do since these are all compact still (where we note that shifts of compact objects
are compact), and we need to be closed under shifts anyway (so this operation G 7→ G′ doesn’t
change the results). ■
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Later (Proposition 6.24), we will see a similar result proved in basically the same way play
a role in the proof of the central Theorem 6.21.

6.4 Silting Objects
In the motivating example of D(R), we saw that an important property of the standard t-
structure on this category was that one can detect if a complex X• ∈ D(R) is in either D(R)≤0 or
D(R)≥0 using the embedding of R into D(R). In particular, one can compute the ith cohomology
of X• by computing the Hom-set Hom(R,X•[i]), which allowed us to get a description of the
t-structure in terms of such Hom-sets.

The idea in generalizing this is: if we can use R to detect these things in D(R), is it possible
to define a t-structure by choosing an object S in D and forming the aisle/coisle by requiring
that HomD(S,X[i]) = 0 for appropriate choices of i? In general, the answer is no. However,
perhaps it is true if we impose additional conditions upon the object S, and one may wonder
what such conditions should be. In the example we know of, we pick out the following two
properties: R is a compact generator of D(R), and Hom(R,R[i]) = 0 for all i ̸= 0. Actually,
we will weaken the latter requirement, but in any case, these conditions are essentially what
motivate the definition of a silting object.

Definition 6.18. Let D be a triangulated category, and let S ∈ D. Define the full subcategories
D≤0
S and D≥0

S by

D≤0
S := {X ∈ D | ∀i > 0, HomD(S,X[i]) = 0},
D≥0
S := {X ∈ D | ∀i < 0, HomD(S,X[i]) = 0}.

We say S is a silting object if S is a compact generator of D and S ∈ D≤0
S , i.e. if S satisfies

∀i > 0, HomD(S, S[i]) = 0.

Remark 6.19. One says S is tilting it S ∈ D≤0
S and S ∈ D≥0

S . Thus, R is actually a tilting object
of D(R), not just a silting object.
Remark 6.20. Silting objects originated in the a paper of Keller & Vossieck [KV88] from 1988
on investigating aisles in derived categories, based on the historically more senior concept of
tilting objects. After this, however, the concept was largely dropped from the mathematical
consciousness, with relatively few papers dedicated to it for many years. In 2002, Hoshino,
Kato, & Miyachi [HKM02] used the concept “indirectly” in that they simply spelled out the
assumptions without referring directly to “silting objects,” and they were the first to notice
that silting objects induce t-structures. The below Theorem 6.21 is essentially [HKM02, Thm.
1.3]. After the paper of Hoshino–Kato–Miyachi, there was again relatively little activity on this
topic until ten years later, when Aihara & Iyama in [AI12] managed to relate it to the already
fairly prominent concept of “mutation,” thus putting it in the context of, and using it to better
explain, an existing theory. Since then, there has been progress on non-compact versions of
silting objects in, for example, [PV17].

There are two central results of interest to us regarding silting objects, both due to Hoshino,
Kato, & Miyachi. We encapsulate them both in the following theorem statement:

Theorem 6.21 (Hoshino–Kato–Miyachi). Let D be a triangulated category, and let S ∈ D be a
silting object. Then

(i) the pair (D≤0
S ,D≥0

S ) forms a t-structure on D, and
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(ii) letting D♡
S be the heart of this t-structure, HomD(S,−) gives an equivalence

HomD(S,−) : D♡
S

∼−→ModEndD(S)

between D♡
S and the category of right modules over the endomorphism ring of S.

The proof of this theorem will involve quite a few steps. We will break it up into several
lemmas and propositions.

Lemma 6.22. Let D be a triangulated category and let S ∈ D be a silting object. Then

(i) D≤0
S [1] ⊆ D≤0

S and D≥0
S [−1] ⊆ D≥0

S , and

(ii) D≤0
S and D≥0

S are closed under small products and coproducts.

Proof. (i) This is immediate from the definition, and in fact does not depend on S be a silting
object. Indeed, if HomD(S,X[i]) = 0 for all i > 0, then certainly HomD(S,X[i+ 1]) = 0 for all
i > 0.

(ii) Let I be some indexing set and let {Xi}i∈I be a collection of objects of D. Then, by the
definition of the product and since S is compact, we have the following two natural isomorphisms:

HomD(S,
∏
i∈I

Xi) ∼−→
∏
i∈I

HomD(S,Xi),
∐
i∈I

HomD(S,Xi) ∼−→ HomD(S,
∐
i∈I

Xi).

Therefore, if we have Xi ∈ D≤0
S for all i ∈ I, then it is clear that ∏i∈I Xi ∈ D≤0

S and ∐i∈I Xi ∈
D≤0
S , along with the dual statements for D≥0

S . ■

Remark 6.23. Note that this implies that D♡
S is closed under small products and coproducts.

Proposition 6.24. Let D be a triangulated category and let S ∈ D be a silting object. Then
D≤0
S is the smallest full subcategory of D which contains S and is closed under extensions, small

coproducts, and non-negative shifts.

Proof. Suppose we have a distinguished triangle

X → Y → Z → X[1]

where X,Z ∈ D≤0
S . Applying Hom(S,−) yields the exact sequence

Hom(S,X[i])→ Hom(S, Y [i])→ Hom(S,Z[i])

for every i > 0, where we note that Hom(S,X[i]) = Hom(S,Z[i]) = 0 by definition of D≤0
S .

Thus, Hom(S, Y [i]) = 0 for all i > 0, so Y ∈ D≤0
S .

For the converse, we will apply Theorem 6.16 and Proposition 6.10. In particular, let X ∈
D≤0
S , and define

G := {S[i] | i ≥ 0}.

This is a set of compact objects generating D (since S generates D), and thus we may apply the
theorem. The theorem produces a sequence of objects and morphisms

X0 → X1 → X2 → · · ·

where we have a very nice morphism u : hocolimiXi → X, and where each Xi further sits in a
distinguished triangle

Yi → Xi → Xi+1 → Yi[1]
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where Yi is a coproduct of objects in G. This implies that all the Xi are formed by non-negative
shifts, coproducts, and extensions of objects in G. Since we have a distinguished triangle∐

i

Xi
1−φ−−→

∐
i

Xi −→ hocolimiXi → (
∐
i

Xi)[1]

we see that also hocolimiXi is formed by such a procedure, and thus it suffices to show that u
is an isomorphism to prove the result.

Consider a distinguished triangle

hocolimiXi
u−→ X → Z → (hocolimiXi)[1]

We want to show that Hom(S[i], Z) = 0 for all i ∈ Z, since because S generates D this implies
that Z = 0. Note that by the first half of this proof, together with Lemma 6.22, the smallest full
subcategory containing S which is closed under non-negative shifts, small products & coproducts,
and extensions is by default a full subcategory of D≤0

S . This implies that hocolimiXi ∈ D≤0
S .

The above distinguished triangle thus exhibits Z as an extension of two objects in D≤0
S , and

therefore we see that Z ∈ D≤0
S . Therefore, we automatically have that

HomD(S,Z[i]) = 0 for all i > 0.

By (f) in Theorem 6.16, the morphism u : hocolimiXi → X has the property that

u∗ : HomD(S[i],hocolimiXi)→ HomD(S[i], X)

is an isomorphism for every i ≥ 0. Therefore, Proposition 6.10 implies that

∀j > 0, HomD(S,Z[−j]) ∼= HomD(S[j], Z) = 0

Thus we know that HomD(S[i], Z) = 0 for all i ̸= 0. The case i = 0 is easy: applying Hom(S,−)
to the above distinguished triangle gives the exact sequence

HomD(S,hocolimiXi) ∼−→ HomD(S,X)→ HomD(S,Z)→ HomD(S, (hocolimiXi)[1]) = 0

and therefore HomD(S,Z) is the cokernel of an isomorphism, i.e. it is zero. Thus, we conclude
that Z = 0, so Lemma 3.18 says u is an isomorphism. ■

The above are essentially enough in order to prove statement (i) of Theorem 6.21. To prove
statement (ii), we still need three more lemmas, two of them purely statements about Abelian
categories, and the last a result about endomorphisms of silting objects. We will state and prove
the last one, Lemma 6.27, at the very end.

Lemma 6.25. Let A be an Abelian category admitting small coproducts, and let P ∈ A be a
projective object. Suppose A satisfies the following two conditions:

(a) For all objects X ∈ A, there exists a set I and an epimorphism∐
i∈I

P ↠ X.

(b) (P is compact.) For any set I and I-indexed family {Xi}i∈I of objects in A the canonical
morphism ∐

i∈I
HomA(P,Xi)→ HomA(X,

∐
i∈I

Xi)

is an isomorphism.
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Then the functor HomA(P,−) gives an additive equivalence

HomA(P,−) : A ∼−→ModEnd(P ).

Proof. First, to be explicit, the (right) module structure is given by composition. That is, for
an endomorphism p : P → P , the action of this on some f : P → X is fp = f ◦ p. This clearly
turns HomA(P,−) into an additive functor of the above type.

We now show HomA(P,−) is fully faithful. Suppose that we have φ : X → Y and that
φ∗ = 0 : Hom(P,X) → Hom(P, Y ). We want to use the Yoneda lemma to deduce that φ = 0,
and to do this we use assumption (a). Let Z ∈ A, and find some set I with an epimorphism
π : ∐i∈I P ↠ Z. Then we have a commutative diagram

HomA(Z,X) HomA(Z, Y )

HomA(∐i∈I P,X) HomA(∐i∈I P, Y )

∏
i∈I HomA(P,X) ∏

i∈I HomA(P, Y )

φ∗

π∗ π∗

φ∗

∼ ∼

(φ∗)=0

where the top vertical arrows are monomorphisms since π is an epimorphism. We then see by
commutativity, and since π∗ is a monomorphism, that φ∗ = 0: HomA(Z,X)→ HomA(Z, Y ) for
all Z ∈ A, and therefore φ = 0. Thus, HomA(P,−) is faithful.

To see that HomA(P,−) is full, let X ∈ A and consider an epimorphism ∐
i∈I P ↠ X.

Taking the kernel N of this epimorphism, we have an exact sequence

0→ N ↪→
∐
i∈I

P ↠ X → 0.

Since P is projective, HomA(P,−) is exact, and therefore we have an exact sequence

0→ HomA(P,N) ↪→ HomA(P,
∐
i∈I

P ) ↠ HomA(P,X)→ 0.

For notational simplicity, let h(−) = hP (−) := HomA(P,−). For any Y ∈ A, we then have a
commutative diagram

0 HomA(X,Y ) HomA(∐i P, Y ) HomA(N,Y )

0 HomEnd(P )(h(X), h(Y )) HomEnd(P )(h(∐i P ), h(Y )) HomEnd(P )(h(N), h(Y ))

with exact rows. We already showed hP (−) was faithful, so we see that the right-most vertical
arrow is a monomorphism, and furthermore, we have the isomorphisms

HomA(P, Y ) = hP (Y ) ∼= HomEnd(P )(hP (P ), hP (Y ))

since hP (P ) = End(P ). Since hP (−) is exact, it in particular preserves colimits, and therefore
we have natural isomorphisms

HomEnd(P )(hP (
∐
i

P ), hP (Y )) ∼= HomEnd(P )(
∐
i

hP (P ), hP (Y )) ∼=
∏
i

HomEnd(P )(hP (P ), hP (Y ))
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so that the middle arrow above is an isomorphism. By the five lemma, this implies that the map

HomA(X,Y )→ HomEnd(P )(hP (X), hP (Y ))

is surjective, so that HomA(P,−) is full.
It remains to show that HomA(P,−) is essentially surjective. Let M ∈ ModEnd(P ), and

choose a free resolution

· · · −→
∐
j∈J1

End(P ) −→
∐
j∈J0

End(P ) −→M −→ 0.

We have natural isomorphisms

· · ·
∐
j∈J1 End(P ) ∐

j∈J0 End(P ) M 0

· · ·
∐
j∈J1 HomA(P, P ) ∐

j∈J0 HomA(P, P ) M 0

· · · HomA(P,∐j∈J1 P ) HomA(P,∐j∈J0 P ) M 0

∼ ∼

and since HomA(P,−) is fully faithful, we obtain an exact sequence

· · · −→
∐
j∈J2

P −→
∐
j∈J1

P
ϕ−→

∐
j∈J0

P.

Taking the cokernel of the map ϕ, we get an object X ∈ A and an exact sequence

· · · −→
∐
j∈J2

P −→
∐
j∈J1

P
ϕ−→

∐
j∈J0

P −→ X −→ 0

which, by the exactness of HomA(P,−) and the uniqueness of cokernels, implies that M ∼=
HomA(P,X). This concludes the proof. ■

The second lemma we need is one which helps us apply the preceding one.

Lemma 6.26. Let A be an Abelian category admitting small coproducts, and let P ∈ A be a
projective object. Then the following are equivalent:

(i) For all X ∈ A, there exists a set I and an epimorphism∐
i∈I

P ↠ X.

(ii) For all X ∈ A, HomA(P,X) = 0 implies X = 0.

Proof. (i) =⇒ (ii). Let X ∈ D and suppose HomA(P,X) = 0. By assumption we have a set I
and an epimorphism

p :
∐
i∈I

P ↠ X

so we may compute
HomA(

∐
i∈I

P,X) ∼=
∏
i∈I

HomA(P,X) ∼= 0
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so that p = 0. We then have 0 = idX ◦ p = 0 ◦ p, and therefore p being an epimorphism implies
idX = 0, so X = 0.

(ii) =⇒ (i). Let X ∈ D. We will construct an epimorphism of the desired form by
considering the simplest possible such candidate morphism, namely

p :
∐

f∈HomA(P,X)
P → X

defined on the fth component exactly by the morphism f : P → X, i.e. pf = f . We prove that
the cokernel of p is zero, with the strategy being to use the assumption (ii). Let Y = coker p,
and note that we then have an exact sequence∐

f∈Hom(P,X) P X Y 0.p

If we have a morphism h : P → Y , then this lifts to a morphism g : P → X such that h is
the composition P

g−→ X ↠ Y . However, by the definition of p, this itself factors through the
inclusion ιg : P → ∐

f∈Hom(P,X) P , so we have the diagram

P

∐
f∈Hom(P,X) P X Y 0.

h
g

ιg

p

But then we see that h is the composition

(P ιg−→
∐
f

P
p−→ X ↠ Y ) = P

0−→ Y

and thus h = 0. This shows that HomA(P, Y ) = 0, so Y = 0 and hence p is an epimorphism. ■

We now combine all of the above work into a proof.

Proof of Theorem 6.21. (i) By Lemma 6.22, we have (T2). To prove (T1), let Y ∈ D≥0
S and

consider the full subcategory UY of D spanned by those objects U such that

∀i ≥ 0, HomD(U [i], Y [−1]) = 0.

It is clear that this is closed under non-negative shifts, small coproducts, and extensions (by
using that the Hom-functors are cohomological). Furthermore, by definition of D≥0

S , S ∈ UY
since for all i ≥ 0

HomD(S[i], Y [−1]) ∼= HomD(S, Y [−i− 1]) = 0

since −i− 1 < 0. Therefore, by Proposition 6.24, we have that D≤0
S ⊆ UY , which proves (T1).

To prove (T3), we observe that Theorem 6.16 produces a sequence of morphisms

X0 → X1 → X2 → · · ·

such that hocolimiXi ∈ D≤0
S (by Proposition 6.24) and where we have a morphism

u : hocolimiXi → X

such that u∗ : Hom(S[j],hocolimiXi) → Hom(S[j], X) is an isomorphism for all j ≥ 0. Let Z
be a cone of u, in a distinguished triangle

hocolimiXi
u−→ X → Z → (hocolimiXi)[1]
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By Proposition 6.10, we see that for all j < 0

HomD(S,Z[j]) = 0,

and following the same argument as in Proposition 6.24 we also see that HomD(S,Z) = 0.
Therefore, Z ∈ D≥1

S , and the above distinguished triangle is the one demanded by (T3).
This proves that (D≤0

S ,D≥0
S ) is a t-structure.

(ii) By Theorem 5.20, the heart D♡
S = D≤0

S ∩D
≥0
S is an Abelian category. We want to apply

Lemma 6.25 to conclude the result first for the truncation τ≥0S. By Lemma 6.26, requirement
(a) of the lemma follows from the assumption that S generates D. In particular, if X ∈ D♡

S ,
then since Hom(τ≥0S,X) ∼= Hom(S,X), we see that

HomD(τ≥0S,X) = 0 =⇒ HomD(S,X) = 0 =⇒ X = 0.

Note that we use that X ∈ D≤0
S ∩ D

≥0
S . Requirement (b) of the lemma is simply that S is

compact, which it is by the definition of being silting, together with the fact that left adjoints
preserve colimits. Furthermore, by Lemma 6.22, the heart D♡

S is closed under small coproducts,
so what remains is to show that τ≥0S is a projective object of D♡

S .
To say that τ≥0S is projective is equivalent to saying that HomD♡

S
(τ≥0S,−) is exact, and

that in turn would follow from having ExtD♡
S

(τ≥0S,−) = 0. Thus, we try to prove the latter.
We use Theorem 5.30 to note that we have a natural isomorphism

ExtD♡
S

(τ≥0S,X) ∼= HomD(τ≥0S,X[1])

for all X ∈ D♡
S , so we must show that the right-hand side is zero. Consider the distinguished

triangle
τ≤−1S −→ S −→ τ≥0S −→ (τ≤−1S)[1]

and apply the cohomological functor Hom(−, X[1]) to get the exact sequence

Hom((τ≤−1S)[1], X[1])→ Hom(τ≥0S,X[1])→ Hom(S,X[1])→ Hom(τ≤−1S,X[1])

and then note that
Hom((τ≤−1S)[1], X[1]) ∼= Hom(τ≤−1S,X) = 0

since, in particular, X ∈ D≥0
S , and

Hom(S,X[1]) = 0

since, in particular, X ∈ D≤0
S . Therefore, we have the exact sequence

0 −→ HomD(τ≥0S,X[1]) −→ 0

so HomD(τ≥0S,X[1]) = 0, and we get that Ext(τ≥0S,X) = 0.
Since τ≥0S and D♡

S now satisfy the requirements of Lemma 6.25 below, we see that we have
an equivalence

HomD♡
S

(τ≥0S,−) : D♡
S

∼−→ModEnd(τ≥0S).

By Lemma 6.27 below,
ModEnd(τ≥0S)

∼= ModEnd(S),

and since τ≥0 is left adjoint to the inclusion D≥0
S ↪→ DS , we have that when restricted to the

heart, there is a natural isomorphism

HomD♡
S

(τ≥0S,−) ∼= HomD(S,−)

which completes the proof. ■
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Lemma 6.27. Let D be a triangulated category admitting small coproducts, and let S ∈ D be a
silting object. Then the canonical map

HomD(S, S)→ HomD(τ≥0S, τ≥0S)

is an isomorphism of algebras.

Proof. The map in question is simply (f : S → S) 7→ τ≥0f , and hence functoriality gives that
this is a morphism of algebras (with multiplication given by composition). To see that this is an
injective map, let f ∈ End(S) and suppose that τ≥0f = 0. Then, by definition of the truncation,
we have a commutative diagram

τ≤−1S S τ≥0S (τ≤−1S)[1]

τ≤−1S S τ≥0S (τ≤−1S)[1]

f 0

and thus, by the weak kernel property of cocones (see Proposition 3.20), we can find a morphism
g : S → τ≤−1S such that

τ≤−1S S τ≥0S (τ≤−1S)[1]

τ≤−1S S τ≥0S (τ≤−1S)[1]

g
f 0

commutes. However, since τ≤−1S ∈ D≤−1
S , we have HomD(S, τ≤−1S) = 0, so g = 0, and

therefore by commutativity we have f = 0.
To see that we have surjectivity, pick some map h ∈ End(τ≥0S), and note that it fits in a

diagram

τ≤−1S S τ≥0S (τ≤−1S)[1]

τ≤−1S S τ≥0S (τ≤−1S)[1]

h

Since HomD(S, (τ≤−1S)[1]) = 0, we see that the composition

S τ≥0S

τ≥0S (τ≤−1S)[1]

h

must be zero, so again the weak kernel property yields a map f : S → τ≤−1S such that

τ≤−1S S τ≥0S (τ≤−1S)[1]

τ≤−1S S τ≥0S (τ≤−1S)[1]

f h

commutes as desired. In particular, uniqueness of adjoints implies that τ≥0f = h. ■
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Example 6.28. Any ring R is a silting object in D(R), and the t-structure generated by it is
the standard t-structure. To see this, note that D(R) is equivalent to KProjR, and we already
saw that R is compact in KProjR in Example 6.6. To see that it is a generator, note that if
X• ∈ KProjR is such that Hom(R,X[i]•) = 0 for all i ∈ Z, then we see that Hi(X•) = 0 for
all i ∈ Z, so X• is acyclic. By the definition of KProjR, this implies that Hom(X•, X•) = 0, so
idX• = 0, which implies that X• = 0. Thus R is a compact generator of KProjR, and hence a
compact generator of D(R). That R is now a silting (and even a tilting object!) is obvious from
the fact that

HomD(R)(R,R[i]) ∼= Hi(R)

and this is zero whenever i ̸= 0.

Example 6.29. In topology, it is frequently of interest to compute the homotopy groups of
some space. Usually, this is practically impossible. As a replacement, one can consider the
stable homotopy groups, which are much more friendly for computation and also appear “in
the wild.” Ordinary homotopy theory essentially occurs in hTop, the homotopy category of
topological spaces. In stable homotopy theory, one replaces topological spaces with spectra
to obtain the stable homotopy category SH, roughly speaking obtained by “stabilizing” hTop
under the operations of suspension and looping, in some sense linearizing it (more precisely,
SH is a triangulated category). The stable homotopy category contains an object called the
sphere spectrum S (obtained by repeatedly applying suspensions to a point). This is a compact
generator of SH, and it is connective (meaning πi(S) = 0 for all i < 0) on account of being
a suspension spectrum, which in this context is exactly the condition of being silting (see, for
example, [SS03, Lemma 3.5.2]).

For more information on this, one should consult the literature on stable homotopy theory,
for example [SS03, 2.3.(i) & 2.3.(ii)] and the resources referenced there. For a more general
result, see [SS03, Thm. 3.9.3] and possibly [HMV20, Remark 4.6]. In particular, these state that
a topological triangulated category (i.e. one which arises as the homotopy category of certain
kinds of model categories) has a (compact) silting object if and only if it is the category of
module spectra over a connective ring spectrum, where the ring spectrum is then the silting
object. In the above, this is given by the sphere spectrum.

6.5 Notes on Gluing & Enhancements
In Section 5.6, we showed that one may glue t-structures in a recollement. This is a good
illustration of a general theme: in the situation of a recollement

C D E .

one is often interested in what structures on C and E one can transport (i.e. glue) to D. What
we have shown earlier is that it is possible for t-structures. One may then wonder if it is possible
for silting objects.

Given silting objects S ∈ C and S′ ∈ E , it is indeed possible to “glue” them to get a silting
object S′′ ∈ D. However, this gluing is not always related to the gluing of the associated
t-structures. Instead, it turns out that in general silting objects are more closely related to
co-t-structures than t-structures. We will not go into any detail on the constructions here, but
an overview is that one may play the same game we played with t-structures but with co-t-
structures, and obtain a similar (but also quite distinct) theory. In particular, one may glue
co-t-structures in a recollement, and the gluing of silting objects is compatible with the gluing
of their associated co-t-structures. In some select situations, it is possible to glue silting objects
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in such a way that the gluing is compatible with the induced t-structures instead. For more
details on this, one can read [LVY14, §3].

Stepping away from gluing, one may ask about how silting objects behave in the context of
stable∞-categories. Very reductively, Theorem 6.21 says that a triangulated category D admit-
ting coproducts and a “nice” compact generator S contains the Abelian category ModEnd(S).
However, it is clear that there is no reason to believe we can extend this to an equivalence
between D and D(End(S)) in general. On the other hand, the analogue for Abelian categories
is essentially just Lemma 6.25, where we see that actually any Abelian category admitting a
“nice” compact generator is equivalent to a module category. Since triangulated categories are
supposed to be similar to Abelian categories, we might wonder what has gone wrong (aside from
conflating two different notions of “nice” compact generators).

As it turns out, if we move from triangulated categories to stable ∞-categories, the result
is actually true. We give a statment of the appropriate theorem, taken directly from [Lur17]
(with two slight modifications to notation, but otherwise word-for-word). Originally, it is due
to Schwede and Shipley in [SS03]. We will denote the homotopy category of an ∞-category C
by h(C). We will not explain any of the notation or terminology, and thus the statement should
be read somewhat heuristically.

Theorem. [Lur17, Thm. 7.1.2.1] Let C be a stable∞-category. Then C is equivalent to RModR
for some E1-ring R if and only if C is presentable and there exists a compact object C ∈ C which
generates C in the following sense: if D ∈ C is an object having the property that ExtnC(C,D) ≃ 0
for all n ∈ Z, then D ≃ 0.

Remark 6.30. Lurie points out in [Lur17, Remark 7.1.2.3] that the E1-ring R in the above
statement may be identified with End(C).

In the context of stable ∞-categories, as long as R is discrete, the category RModR “is”
just (the enhanced version of) D(R) = D(ModR), and so the above theorem states that any
(nice) stable ∞-category admitting a compact generator is equivalent to a module ∞-category.
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Table of Selected Notation
Symbol Meaning
C/A The slice category over A, i.e. the category of morphisms to A.
Cop The opposite category of C.
CS The localization of C at the class of morphisms S.∏
,
∐ Product and coproduct.

C(A) The category of chain complexes in A.
Cf , Kf A cone (resp. cocone) of a morphism f in a triangulated category.
D/N Verdier quotient of a triangulated category D by a null system N .
∆X , ∇X The diagonal X → X ×X and codiagonal X ⊔X → X.
∆X/Y , ∇Y/X The diagonal X → X×Y X and codiagonal Y ⊔X Y → Y associated

to a morphism X → Y .
D(A) The derived category of the Abelian category A.
Ext(X,Y ) The (first) Yoneda extension group; the extensions of X by Y .
Fun(C,D) The category of functors C → D.
FunS(C,D) The category of functors C → D sending morphisms in S to isomor-

phisms in D.
Hn The nth cohomology functor D → D♡ associated to a t-structure

on a triangulated category D.
HomC(A,B) The collection of morphisms A→ B in the category C.
im f The image of the morphism f .
I(X)• The cylinder of the chain complex X•.
K(A) The homotopy category of chain complexes in A.
KProjR The homotopically projective objects in K(ModR); see the proof

of Prop. 6.2.
ModR, RMod The right (resp. left) modules over a ring R.
lim←−, lim−→ The limit and colimit.
thick(C) The smallest thick subcategory of a triangulated category D con-

taining C.
τ≤n, τ≥n The truncation functors associated to a t-structure (D≤0,D≥0) on

a triangulated category D.
X

∼−→ Y An isomorphism X → Y .
X ↪→ Y An injection/monomorphism X → Y .
C ↪→ D A fully faithful functor C → D.
X ↠ Y A surjection/epimorphism X → Y .
C ↠ D An essentially surjective functor C → D.
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