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1 Tensor Products of Vector Spaces

Let k be a field, eg. k = Rork = C,and let V,V’ € Vectﬁéd' be finite-dimensional k-vector
spaces. The tensor product V®y V"’ can be defined abstractly as a vector space satisfying a certain
universal property, in that it is the unique vector space which turns bilinear maps V x V' — W
into linear maps V ®k V' — W. On the other hand, this description is non-constructive, and
indeed does not show that the tensor product exists.

We may give an explicit construction of the tensor product as follows:

Definition 1.1. Let V and V"’ be k-vector spaces. Then their tensor product over k is the vector
space
VgV :={ Z Ap (v ®0") | almost all A’s are 0}

veV
v'eV’
subject to the relations
VRV +v® v, =0 (v] +7)), 1100 +000 = (v +02) RV,

AMo®v')=(Av)® v =0v® (AV).

That is, we consider the free vector space

U k-(v®?v)

veV
v'eV’

with basis {v ® v'}vev, ey’ and then quotient by the subspace spanned by the collections

{vev+vev,-v® (v +v))|veV,v],vyeV'},

{010 41200 — (v +02)® 0" | vy, v2€ V, v € V'},
{Avev)-(Av)®v' |Aek, veV,v eV},
{Avev)-v®Av)|Aek,veV,v € V'}

In other words, the tensor product V®y V"’ is the vector space generated by the symbols v®v’
under addition, scaling, and the given relations. This is still quite hard to understand, because
it is a large amount of data, but luckily if we assume that V and V' are finite-dimensional then
we have a much more pleasant description.

Proposition 1.2. Let V,V’ € Vectﬁ;d‘. Suppose V has a basis {e;}", and suppose that V' has a basis

{e]f ;7:1. Then V ®x V' has a basis given by {e; ® 6}}1si5m, 1<j<n-



Proof. Consider a basic element v® v’ in V ® V. Since we have bases of V and V', we can write
_ . r_ o7
V= Z/\lel and v Zy]e].
1 ]

But then

VRV = (ZAiei)®0/=ZAi(6i®0/):Z Aie; ® Z‘U]e]/
5 i i j
= Z Z)\je,' ® yje]’- = Z Aipj(ei ® e]I)
i j i,j

Since V ®x V"’ is generated by elements of the form v ® v’, and elements of the latter form are
generated by elements of the form ¢; ® e]’., we see that the set {e; ® e]’. }ij spans V @ V.

Now observe that since V ® V' is spanned by a finite set, it is necessarily finite-dimensional.
It is then a standard fact that

dimg(V ®k V') = dimg Homy(V @k V', k).

Therefore, if we can show that the latter quantity is #{e; ® e ]’ }i,j = m - n, then we are done.

By definition, linear maps V ®k V’ — k are in linear bijection with bilinear maps V xV’ — k.
Now observe that we can define a collection {¢;; : V x V' — Kk} of such bilinear maps by

bilinearly extending
1 ifk=iand?l =7,
0 otherwise.

¢iilex, ep) = {

It is then clear that the collection {¢; ;} forms a basis for the space of bilinear maps V x W — k,
and hence that

dimg(V ® V') = dimg Homy (V ®x V', k) = dimy{bilinear mapsV x V' — k} = m - n.

This completes the proof. [

The above can simply be restated as follows:

Corollary 1.3. Let V. = k™ and V'’ = k". Then this induces an isomorphism V @ V' = k'".

2 Tensor Algebras

Now that we have access to the tensor product between vector spaces, we want to think of the
symbol ® sitting between two vectors v ® v’ as an actual “product” of some sort. The way to do
this is by constructing the tensor algebra, which we do by considering “formal sums” of tensors
of varying lengths. We produce two variants on this, for the convenience of the reader.

Definition 2.1. Let V € Vecty. The tensor algebra over V is

T(V) :=]_[v®" —koVe(VerV)e---
n=0



and the large tensor algebra over V is
T((V)) := ]—[v®" =kXVX(VREV)X---.
n=0

Remark 2.2. The difference between the two is that the first requires almost all coefficients to be
zero, while the latter allows any and all sequences.

It is clear that both T(V) and T((V)) are (co-dimensional) k-vector spaces, so all that really
remains is to say what the multiplication on them is. Intuitively, we should want the multipli-
cation to act as follows:

(11® QU)W ® - ®Wy)=01Q QU QW -+ Wy.

Indeed, by bilinearity, this is enough to specify the multiplication. More explicitly, consider two
arbitrary elements

V= Z Z Ai(vi1®--®vig) and w = Z Z pi(wi1 ® -+ @ wj 4).
d i d i

Then we should have

VW = (zd] Z)\i(vm - ®Vi4)|® (Zd: Z pi(wi1 ® -+ ® wi,d))

= Z ZA,‘ ((ZJM R -®Vig)® Z Z‘Ui(wi,l ® - ®Wia)
d i d i

= Z Z Z Z il ((Uz‘,l Q- ®Vig)®(Wi1Q - ® wi,d))
d 1 d i

so that bilinearity makes the definition reduce to the given one.

Example 2.3. Let V be a 1-dimensional k-vector space, so that V is spanned by some vector
x € V. Then
T(V)=k[x] and T((V)) = Kk[x].

To see this, first note that all tensor powers V®" of V are also 1-dimensional, in particular
spanned by the elements of the form

XQ--®x e Ve,

To simplify notation, we write x®" for these. After this, the second fact to note is that the element
x € V generates T(V) as a k-algebra: trivially, any element of T (V) is of the form

n
Z Aax® = Ao+ Ayx + Aox®2 4o 4 A, 0%,
d=0

We then define a homomorphism
¢: T(V) — kl[x]

by ¢(x®") = x" and extending this linearly. Definitionally, this gives a linear isomorphism of
the desired type, and it is also clear that it preserves the multiplication, hence is is actually an
isomorphism T(V') = k[x]. The computation showing that T((V)) = k[x] is essentially identical;
the only difference is that one has to consider an infinite sum Y3, 14x® instead of a finite one.



Example 2.4. Let V be an n-dimensional k-vector space, with basis {x1, ..., x,}. Then
T(V) =k({x1,...,xn)

is the polynomial ring over k in n noncommutative variables. A similar description can be
given for T((V)), being the formal power series ring over k in n noncommutative variables. The
computation for this is essentially identical to Example One sees, for example, that T(V) is
generated as a k-algebra by the elements {x1, ..., x,}.

Intuitively, the kth piece V®F of T(V) consists of the degree k homogeneous polynomials in
the x;. For example, if n = 2 and k = 3, then a prototypical element of V®* might be

2x%% +x1 ® x93 ® x1 — 3x1 ® x5°.

Note that when n = 1, there are no other variables to express any noncommutativity, so k[x] =
k(x).
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